Pregunta
upstudy study bank question image url

Which relation is a function? (A) \( (1,0),(3,0),(1,1),(3,1)(1,3) \)

Ask by Garrett Bartlett. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The relation is not a function because some inputs are paired with multiple outputs.

Solución

To determine whether a relation is a function, we must verify that **each input** (the first element of each ordered pair) is associated with **exactly one output** (the second element of each ordered pair). Let's examine the given relation: \[ (1,0),\ (3,0),\ (1,1),\ (3,1),\ (1,3) \] - **Input 1** is associated with three different outputs: **0**, **1**, and **3**. - **Input 3** is associated with two different outputs: **0** and **1**. Since **input 1** and **input 3** each map to multiple outputs, this violates the definition of a function, where each input must map to **exactly one output**. **Conclusion:** The given relation **is not** a function because some inputs are associated with multiple outputs. Answer: **A) is not a function because some inputs are paired with multiple outputs.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

In a relation, each input (or x-coordinate) must be associated with exactly one output (or y-coordinate) for it to qualify as a function. In the provided relation \( (1,0),(3,0),(1,1),(3,1),(1,3) \), the input value \( 1 \) corresponds to three different outputs: \( 0, 1, \) and \( 3 \). This violates the definition of a function, making it clear that this relation is not a function. To understand this better, consider that for a relation to be a function, every x-value must be linked to one and only one y-value. In simpler terms, if you think of x-values as people making decisions, each of them should only make one decision to keep things clear and organized!

preguntas relacionadas

Latest Pre Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad