4. What is the biggest number of terms for which... \( \sum_{r=1}^{n}(r+1) \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
Do you know that the sum of terms in sequences can really unlock creativity in math? The expression \( \sum_{r=1}^{n}(r+1) \) simplifies beautifully to \( \sum_{r=1}^{n} r + \sum_{r=1}^{n} 1 \). The first part, by using the formula for the sum of the first \( n \) integers \( \frac{n(n+1)}{2} \), gives you a neat result. The second part simply adds up to \( n \), turning the whole thing into \( \frac{n(n+1)}{2} + n \), which can be combined into a single expression: \( \frac{n(n+3)}{2} \) for all those math enthusiasts out there! Moreover, you might be surprised to learn how many real-world applications depend on summing sequences like these! From calculating the total number of items needed in a batch production process to forecasting revenue growth where increases occur consistently over time, the beauty of sums shines through. Understanding how to manipulate and simplify these sums can help streamline planning and decision-making in various fields. Math truly is everywhere!