A helicopter flies 62 miles east, then turns and flies at an angle of \( 45^{\circ} \) north of east for 199 miles. What is the magnitude of the helicopter's resultant vector? Draw a vector diagram. \[ |\vec{R}|=[\text { ? ] miles } \]
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the magnitude of the helicopter's resultant vector, we can break down its path into components. The first leg, 62 miles east, contributes \( \vec{A} = 62 \hat{i} \) miles. The second leg can be broken into its east (\(\hat{i}\)) and north (\(\hat{j}\)) components. The helicopter flies 199 miles at \( 45^\circ \) north of east, giving both components as: \[ \vec{B}_x = 199 \cos(45^\circ) = 199 \cdot \frac{\sqrt{2}}{2} \approx 140.14 \hat{i} \text{ miles} \] \[ \vec{B}_y = 199 \sin(45^\circ) = 199 \cdot \frac{\sqrt{2}}{2} \approx 140.14 \hat{j} \text{ miles} \] Now, we can sum the components: \[ \vec{R}_x = 62 + 140.14 = 202.14 \hat{i} \text{ miles} \] \[ \vec{R}_y = 140.14 \hat{j} \text{ miles} \] The magnitude of the resultant vector is calculated using the Pythagorean theorem: \[ |\vec{R}| = \sqrt{(202.14)^2 + (140.14)^2} \approx \sqrt{40856.32 + 19638.67} \approx \sqrt{60494.99} \approx 245.95 \text{ miles} \] So, the magnitude of the helicopter's resultant vector is approximately \( 245.95 \) miles. As for the vector diagram, you can illustrate it by drawing: 1. A horizontal line (to the right) for the first leg (62 miles). 2. An angled line (at \( 45^\circ \) from the end of the first line) representing the second leg (199 miles). 3. The resultant vector would be a straight line from the starting point to the end of the second line, completing the triangle formed by these two segments. With that, you've got a visual representation of how the helicopter flew!