Given: \( A B C \) is a right triangle with right angle \( C . A C=15 \) centimeters and \( m \angle A=40^{\circ} \) What is \( B C \) ? Enter your answer, rounded to the nearest tenth, in the box. cm
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find the length \( BC \) in triangle \( ABC \), we can use the sine function because we know the length of side \( AC \) and the angle \( A \). Using the sine definition: \[ \sin(A) = \frac{opposite}{hypotenuse} \] In this case, \( \sin(40^\circ) = \frac{BC}{AC} \), where \( AC = 15 \) cm. Rearranging gives us: \[ BC = AC \cdot \sin(A) = 15 \cdot \sin(40^\circ) \] Now we can calculate \( \sin(40^\circ) \) which is approximately 0.6428, so: \[ BC \approx 15 \cdot 0.6428 \approx 9.642 \, \text{cm} \] Rounded to the nearest tenth, \( BC \approx 9.6 \) cm.