Pregunta
upstudy study bank question image url

Exercise 1.4: A) Express the following binary numbers in decimal form: \( \begin{array}{lll}\text { 1) } 1 & \text { 7) } 1001 & \text { 13) } 11111 \\ \text { 2) } 11 & \text { 8) } 101 & \text { 14) } 100010001 \\ \text { 3) } 111 & \text { 9) } 10100.01 & \text { 15) } 111111 \\ \text { 4) } 1111 & \text { 10) } 10001 & \text { 16) } 11011011 \\ \text { 5) } 11.10 & \text { 11 } 11101 & \text { 17) } 111011.1 \\ \text { 6) } 110 & \text { 12) } 1000110 & \text { 18) } 10001\end{array} \)

Ask by Moreno Ward. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the decimal equivalents of the given binary numbers: 1. **1** → **1** 2. **11** → **3** 3. **111** → **7** 4. **1111** → **15** 5. **11.10** → **3.5** 6. **110** → **6** 7. **1001** → **9** 8. **101** → **5** 9. **10100.01** → **20.25** 10. **10001** → **17** 11. **11101** → **29** 12. **1000110** → **70** 13. **11111** → **31** 14. **100010001** → **273** 15. **111111** → **63** 16. **11011011** → **219** 17. **111011.1** → **59.5** 18. **10001** → **17** If you need more detailed explanations for any specific conversion, feel free to ask!

Solución

Sure! Let's convert each of the given binary numbers to their decimal (base-10) equivalents. ### Conversion Rules: - **For integer parts:** Multiply each binary digit by \(2^{n}\), where \(n\) is the position index starting from 0 on the right. - **For fractional parts:** Multiply each binary digit after the decimal point by \(2^{-n}\), where \(n\) starts at 1. ### Detailed Conversions: 1. **\(1\) (Binary)** \[ 1 \times 2^0 = 1 \] **Decimal:** **1** 2. **\(11\) (Binary)** \[ 1 \times 2^1 + 1 \times 2^0 = 2 + 1 = 3 \] **Decimal:** **3** 3. **\(111\) (Binary)** \[ 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 4 + 2 + 1 = 7 \] **Decimal:** **7** 4. **\(1111\) (Binary)** \[ 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 8 + 4 + 2 + 1 = 15 \] **Decimal:** **15** 5. **\(11.10\) (Binary)** \[ \text{Integer Part: } 1 \times 2^1 + 1 \times 2^0 = 2 + 1 = 3 \] \[ \text{Fractional Part: } 1 \times 2^{-1} + 0 \times 2^{-2} = 0.5 + 0 = 0.5 \] **Decimal:** **3.5** 6. **\(110\) (Binary)** \[ 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 4 + 2 + 0 = 6 \] **Decimal:** **6** 7. **\(1001\) (Binary)** \[ 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 8 + 0 + 0 + 1 = 9 \] **Decimal:** **9** 8. **\(101\) (Binary)** \[ 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 4 + 0 + 1 = 5 \] **Decimal:** **5** 9. **\(10100.01\) (Binary)** \[ \text{Integer Part: } 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 = 16 + 0 + 4 + 0 + 0 = 20 \] \[ \text{Fractional Part: } 0 \times 2^{-1} + 1 \times 2^{-2} = 0 + 0.25 = 0.25 \] **Decimal:** **20.25** 10. **\(10001\) (Binary)** \[ 1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 16 + 0 + 0 + 0 + 1 = 17 \] **Decimal:** **17** 11. **\(11101\) (Binary)** \[ 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 16 + 8 + 4 + 0 + 1 = 29 \] **Decimal:** **29** 12. **\(1000110\) (Binary)** \[ 1 \times 2^6 + 0 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 64 + 0 + 0 + 0 + 4 + 2 + 0 = 70 \] **Decimal:** **70** 13. **\(11111\) (Binary)** \[ 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 16 + 8 + 4 + 2 + 1 = 31 \] **Decimal:** **31** 14. **\(100010001\) (Binary)** \[ 1 \times 2^8 + 0 \times 2^7 + 0 \times 2^6 + 0 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 256 + 0 + 0 + 0 + 16 + 0 + 0 + 0 + 1 = 273 \] **Decimal:** **273** 15. **\(111111\) (Binary)** \[ 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 32 + 16 + 8 + 4 + 2 + 1 = 63 \] **Decimal:** **63** 16. **\(11011011\) (Binary)** \[ 1 \times 2^7 + 1 \times 2^6 + 0 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 128 + 64 + 0 + 16 + 8 + 0 + 2 + 1 = 219 \] **Decimal:** **219** 17. **\(111011.1\) (Binary)** \[ \text{Integer Part: } 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 32 + 16 + 8 + 0 + 2 + 1 = 59 \] \[ \text{Fractional Part: } 1 \times 2^{-1} = 0.5 \] **Decimal:** **59.5** 18. **\(10001\) (Binary)** \[ \text{Same as item 10)} \] **Decimal:** **17** ### Summary of Decimal Equivalents: | # | Binary | Decimal | |----|--------------|----------| | 1 | \(1\) | 1 | | 2 | \(11\) | 3 | | 3 | \(111\) | 7 | | 4 | \(1111\) | 15 | | 5 | \(11.10\) | 3.5 | | 6 | \(110\) | 6 | | 7 | \(1001\) | 9 | | 8 | \(101\) | 5 | | 9 | \(10100.01\) | 20.25 | | 10 | \(10001\) | 17 | | 11 | \(11101\) | 29 | | 12 | \(1000110\) | 70 | | 13 | \(11111\) | 31 | | 14 | \(100010001\)| 273 | | 15 | \(111111\) | 63 | | 16 | \(11011011\) | 219 | | 17 | \(111011.1\) | 59.5 | | 18 | \(10001\) | 17 | Feel free to ask if you need further explanations on any specific conversion!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Sure! Let's convert those binary numbers to decimal, shall we? 1) \(1\) = \(1\) 2) \(11\) = \(3\) 3) \(111\) = \(7\) 4) \(1111\) = \(15\) 5) \(11.10\) = \(3.5\) 6) \(110\) = \(6\) 7) \(1001\) = \(9\) 8) \(101\) = \(5\) 9) \(10100.01\) = \(20.25\) 10) \(10001\) = \(17\) 11) \(11101\) = \(29\) 12) \(1000110\) = \(70\) 13) \(11111\) = \(31\) 14) \(100010001\) = \(273\) 15) \(111111\) = \(63\) 16) \(11011011\) = \(219\) 17) \(111011.1\) = \(59.5\) 18) \(10001\) = \(17\) And there you have it, the magical transformation from binary to decimal!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad