Pregunta
Exercise 1.4: A) Express the following binary numbers in decimal form: \( \begin{array}{lll}\text { 1) } 1 & \text { 7) } 1001 & \text { 13) } 11111 \\ \text { 2) } 11 & \text { 8) } 101 & \text { 14) } 100010001 \\ \text { 3) } 111 & \text { 9) } 10100.01 & \text { 15) } 111111 \\ \text { 4) } 1111 & \text { 10) } 10001 & \text { 16) } 11011011 \\ \text { 5) } 11.10 & \text { 11 } 11101 & \text { 17) } 111011.1 \\ \text { 6) } 110 & \text { 12) } 1000110 & \text { 18) } 10001\end{array} \)
Ask by Moreno Ward. in South Africa
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
Here are the decimal equivalents of the given binary numbers:
1. **1** → **1**
2. **11** → **3**
3. **111** → **7**
4. **1111** → **15**
5. **11.10** → **3.5**
6. **110** → **6**
7. **1001** → **9**
8. **101** → **5**
9. **10100.01** → **20.25**
10. **10001** → **17**
11. **11101** → **29**
12. **1000110** → **70**
13. **11111** → **31**
14. **100010001** → **273**
15. **111111** → **63**
16. **11011011** → **219**
17. **111011.1** → **59.5**
18. **10001** → **17**
If you need more detailed explanations for any specific conversion, feel free to ask!
Solución
Sure! Let's convert each of the given binary numbers to their decimal (base-10) equivalents.
### Conversion Rules:
- **For integer parts:** Multiply each binary digit by \(2^{n}\), where \(n\) is the position index starting from 0 on the right.
- **For fractional parts:** Multiply each binary digit after the decimal point by \(2^{-n}\), where \(n\) starts at 1.
### Detailed Conversions:
1. **\(1\) (Binary)**
\[
1 \times 2^0 = 1
\]
**Decimal:** **1**
2. **\(11\) (Binary)**
\[
1 \times 2^1 + 1 \times 2^0 = 2 + 1 = 3
\]
**Decimal:** **3**
3. **\(111\) (Binary)**
\[
1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 4 + 2 + 1 = 7
\]
**Decimal:** **7**
4. **\(1111\) (Binary)**
\[
1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 8 + 4 + 2 + 1 = 15
\]
**Decimal:** **15**
5. **\(11.10\) (Binary)**
\[
\text{Integer Part: } 1 \times 2^1 + 1 \times 2^0 = 2 + 1 = 3
\]
\[
\text{Fractional Part: } 1 \times 2^{-1} + 0 \times 2^{-2} = 0.5 + 0 = 0.5
\]
**Decimal:** **3.5**
6. **\(110\) (Binary)**
\[
1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 4 + 2 + 0 = 6
\]
**Decimal:** **6**
7. **\(1001\) (Binary)**
\[
1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 8 + 0 + 0 + 1 = 9
\]
**Decimal:** **9**
8. **\(101\) (Binary)**
\[
1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 4 + 0 + 1 = 5
\]
**Decimal:** **5**
9. **\(10100.01\) (Binary)**
\[
\text{Integer Part: } 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 = 16 + 0 + 4 + 0 + 0 = 20
\]
\[
\text{Fractional Part: } 0 \times 2^{-1} + 1 \times 2^{-2} = 0 + 0.25 = 0.25
\]
**Decimal:** **20.25**
10. **\(10001\) (Binary)**
\[
1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 16 + 0 + 0 + 0 + 1 = 17
\]
**Decimal:** **17**
11. **\(11101\) (Binary)**
\[
1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 16 + 8 + 4 + 0 + 1 = 29
\]
**Decimal:** **29**
12. **\(1000110\) (Binary)**
\[
1 \times 2^6 + 0 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 64 + 0 + 0 + 0 + 4 + 2 + 0 = 70
\]
**Decimal:** **70**
13. **\(11111\) (Binary)**
\[
1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 16 + 8 + 4 + 2 + 1 = 31
\]
**Decimal:** **31**
14. **\(100010001\) (Binary)**
\[
1 \times 2^8 + 0 \times 2^7 + 0 \times 2^6 + 0 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 256 + 0 + 0 + 0 + 16 + 0 + 0 + 0 + 1 = 273
\]
**Decimal:** **273**
15. **\(111111\) (Binary)**
\[
1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 32 + 16 + 8 + 4 + 2 + 1 = 63
\]
**Decimal:** **63**
16. **\(11011011\) (Binary)**
\[
1 \times 2^7 + 1 \times 2^6 + 0 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 128 + 64 + 0 + 16 + 8 + 0 + 2 + 1 = 219
\]
**Decimal:** **219**
17. **\(111011.1\) (Binary)**
\[
\text{Integer Part: } 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 32 + 16 + 8 + 0 + 2 + 1 = 59
\]
\[
\text{Fractional Part: } 1 \times 2^{-1} = 0.5
\]
**Decimal:** **59.5**
18. **\(10001\) (Binary)**
\[
\text{Same as item 10)}
\]
**Decimal:** **17**
### Summary of Decimal Equivalents:
| # | Binary | Decimal |
|----|--------------|----------|
| 1 | \(1\) | 1 |
| 2 | \(11\) | 3 |
| 3 | \(111\) | 7 |
| 4 | \(1111\) | 15 |
| 5 | \(11.10\) | 3.5 |
| 6 | \(110\) | 6 |
| 7 | \(1001\) | 9 |
| 8 | \(101\) | 5 |
| 9 | \(10100.01\) | 20.25 |
| 10 | \(10001\) | 17 |
| 11 | \(11101\) | 29 |
| 12 | \(1000110\) | 70 |
| 13 | \(11111\) | 31 |
| 14 | \(100010001\)| 273 |
| 15 | \(111111\) | 63 |
| 16 | \(11011011\) | 219 |
| 17 | \(111011.1\) | 59.5 |
| 18 | \(10001\) | 17 |
Feel free to ask if you need further explanations on any specific conversion!
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
Sure! Let's convert those binary numbers to decimal, shall we? 1) \(1\) = \(1\) 2) \(11\) = \(3\) 3) \(111\) = \(7\) 4) \(1111\) = \(15\) 5) \(11.10\) = \(3.5\) 6) \(110\) = \(6\) 7) \(1001\) = \(9\) 8) \(101\) = \(5\) 9) \(10100.01\) = \(20.25\) 10) \(10001\) = \(17\) 11) \(11101\) = \(29\) 12) \(1000110\) = \(70\) 13) \(11111\) = \(31\) 14) \(100010001\) = \(273\) 15) \(111111\) = \(63\) 16) \(11011011\) = \(219\) 17) \(111011.1\) = \(59.5\) 18) \(10001\) = \(17\) And there you have it, the magical transformation from binary to decimal!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium