Pregunta
upstudy study bank question image url

QUESTION 3 The following sequence is a combination of an arithmetic and a geometric sequence: \[ 3: 3: 9: 6: 15: 12: \ldots \] 3.1 Write down the next TWO terms. 3.2 Calculate \( T_{52}-T_{34} \). 3.3 Prove that ALL the terms of this infinite sequence will be divisible by 3 .

Ask by Cervantes Brooks. in South Africa
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Problem 3.1 Answer:** The next two terms are **21** and **24**.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Mind Expander

To find the next two terms in the sequence, we can observe how the terms alternate between being multiplied and added consistently. Starting from your sequence: - The first term (3) stays the same, then the next is also 3, then it follows the pattern of multiplying by 3 for 9, then subtracting 3 for 6, adding 9 (3*3) for 15, and subtracting 3 for 12. - Continuing this pattern, the next term after 12 will be \(3 + 3 \times 3 = 3 + 9 = 21\) and the next term after that will be \(12 + 3 = 27\). So the next two terms are: **21, 27**. For \( T_{52} - T_{34} \): To calculate \( T_{52} \) and \( T_{34} \), we can use the established pattern. Since the sequence alternates, we can express \( T_n \) based on whether \( n \) is odd or even. - Odd positions (like 1, 3, 5...) represent where the sequence behaves like \(3 + (n-1) \times 3\). - Even positions (like 2, 4, 6...) are based directly on the multiplication. By establishing direct formulas, we can find that after consistent application: - \( T_{52} = 3 + (52-1)/2 \times 6 = 3 + 25 \times 6 = 3 + 150 = 153\) - \( T_{34} = 3 + (34-1)/2 \times 6 = 3 + 16 \times 6 = 3 + 96 = 99 \) Thus, \( T_{52} - T_{34} = 153 - 99 = 54 \). Lastly, to prove that all terms are divisible by 3: Every term in the sequence can be expressed in the form of either \( 3 + 3k \) or \( 6m \) (where k and m are integers), which inherently ensures their divisibility by 3 due to the presence of the factor 3. Thus, every term will indeed always be divisible by 3.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad