5) \( \frac{4 a-5}{6 a^{2}+30 a}+\frac{a-1}{6 a^{2}+30 a} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To combine the fractions, you can start by observing that both fractions have the same denominator: \[ \frac{4a - 5}{6a^2 + 30a} + \frac{a - 1}{6a^2 + 30a} = \frac{(4a - 5) + (a - 1)}{6a^2 + 30a} \] Now, simplify the numerator: \[ (4a - 5) + (a - 1) = 4a + a - 5 - 1 = 5a - 6 \] So, the expression simplifies to: \[ \frac{5a - 6}{6a^2 + 30a} \] Next, you can factor the denominator: \[ 6a^2 + 30a = 6a(a + 5) \] Now, the expression looks like this: \[ \frac{5a - 6}{6a(a + 5)} \] This is the simplified form of the given expression: \[ \frac{5a - 6}{6a(a + 5)} \]