Pregunta
upstudy study bank question image url

11. Vertex: \( (5,-3) \); passes through the point \( (1,5) \)

Ask by Harris Pearson. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation of the parabola is \( y = \frac{1}{2}(x - 5)^2 - 3 \).

Solución

To find the equation of a parabola with a given vertex and a point it passes through, we can use the **vertex form** of a parabola's equation: \[ y = a(x - h)^2 + k \] Where: - \((h, k)\) is the vertex of the parabola. - \(a\) determines the "width" and the direction (upward or downward) of the parabola. **Given:** - Vertex \((h, k) = (5, -3)\) - The parabola passes through the point \((1, 5)\) **Step 1: Plug in the vertex into the vertex form.** \[ y = a(x - 5)^2 - 3 \] **Step 2: Use the point \((1, 5)\) to solve for \(a\).** \[ 5 = a(1 - 5)^2 - 3 \] \[ 5 = a( (-4)^2 ) - 3 \] \[ 5 = 16a - 3 \] \[ 5 + 3 = 16a \] \[ 8 = 16a \] \[ a = \frac{8}{16} = \frac{1}{2} \] **Step 3: Write the final equation of the parabola.** \[ y = \frac{1}{2}(x - 5)^2 - 3 \] **Expanded Form (Optional):** If you prefer the standard quadratic form, you can expand the equation: \[ y = \frac{1}{2}(x^2 - 10x + 25) - 3 \] \[ y = \frac{1}{2}x^2 - 5x + \frac{25}{2} - 3 \] \[ y = \frac{1}{2}x^2 - 5x + \frac{19}{2} \] **Summary:** The equation of the parabola with vertex \((5, -3)\) that passes through the point \((1, 5)\) is: \[ y = \frac{1}{2}(x - 5)^2 - 3 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine the equation of the parabola that has a vertex at \( (5, -3) \) and passes through the point \( (1, 5) \), you can start with the vertex form of a parabola's equation: \[ y = a(x - h)^2 + k \] Here, \( h = 5 \) and \( k = -3 \), so the equation becomes: \[ y = a(x - 5)^2 - 3 \] Now plug in the point \( (1, 5) \) to solve for \( a \): \[ 5 = a(1 - 5)^2 - 3 \] \[ 5 = a(16) - 3 \] \[ 8 = 16a \] \[ a = \frac{1}{2} \] So, the equation of the parabola is: \[ y = \frac{1}{2}(x - 5)^2 - 3 \] This tells us that the parabola opens upwards and reaches its minimum at the vertex \( (5, -3) \). The beauty of parabolas is that they're not just numbers on a piece of paper! They are all around us—in the design of satellite dishes, the trajectory of basketball hoops, and even in the shape of some fun roller coasters. Understanding their mathematical properties can unveil the secrets of these exciting real-world applications. Moreover, it's essential to remember that when solving for parameters like the vertex or equations from points, minor arithmetic errors can lead to significant changes in the final result. Double-checking calculations and ensuring accurate substitution can help stave off common mistakes, ensuring that those parabolas reflect the true beauty of their curves!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad