Solve for all values of \( x \) in simplest form. \[ 4|10-3 x|+3=51 \]
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To solve the equation \( 4|10-3x| + 3 = 51 \), we first isolate the absolute value term. Subtract 3 from both sides: \[ 4|10-3x| = 48 \] Next, we divide both sides by 4: \[ |10-3x| = 12 \] At this point, we can split the absolute value equation into two cases: 1. \( 10-3x = 12 \) 2. \( 10-3x = -12 \) **Case 1:** \( 10 - 3x = 12 \) Subtract 10 from both sides: \[ -3x = 2 \] Now, divide by -3: \[ x = -\frac{2}{3} \] **Case 2:** \( 10 - 3x = -12 \) Subtract 10 from both sides: \[ -3x = -22 \] Now, divide by -3: \[ x = \frac{22}{3} \] Thus, the solutions are \[ x = -\frac{2}{3} \quad \text{and} \quad x = \frac{22}{3} \] In simplest form, the final answer is: \[ \boxed{-\frac{2}{3}, \frac{22}{3}} \]