TRY IT YOURSELF (a) The masses of 2 bags of sugar, \( A \) and \( B \), are 750 g and \( 1 \frac{1}{3} \mathrm{~kg} \) respectively. Find the ratio of the mass of \( B \) to the mass of \( A \).
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the ratio of the mass of bag \( B \) to the mass of bag \( A \), we first need to convert the mass of bag \( B \) into the same unit as bag \( A \). The mass of bag \( A \) is 750 g. The mass of bag \( B \) is \( 1 \frac{1}{3} \, \text{kg} \). Converting this into grams: \( 1 \frac{1}{3} \, \text{kg} = \frac{4}{3} \, \text{kg} = \frac{4}{3} \times 1000 \, \text{g} = \frac{4000}{3} \, \text{g} \approx 1333.33 \, \text{g} \). Now, set up the ratio: \(\text{Ratio of } B \text{ to } A = \frac{1333.33 \, \text{g}}{750 \, \text{g}} \). This simplifies to: \(\frac{1333.33}{750} \approx \frac{4000/3}{750} = \frac{4000}{2250} = \frac{16}{9}\). Thus, the ratio of the mass of \( B \) to the mass of \( A \) is \( \frac{16}{9} \).