Establish the identity. \[ (\csc \theta+\cot \theta)(\csc \theta-\cot \theta)=1 \] Multiply and write the left side expression as the difference of two squares.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To establish the identity, we start by noting that the left-hand side can be expressed as the difference of two squares: \[ (\csc \theta + \cot \theta)(\csc \theta - \cot \theta) = \csc^2 \theta - \cot^2 \theta. \] Using the Pythagorean identity, we know that: \[ \csc^2 \theta = 1 + \cot^2 \theta. \] Now, substituting this into our expression gives: \[ \csc^2 \theta - \cot^2 \theta = (1 + \cot^2 \theta) - \cot^2 \theta = 1. \] Thus, we have shown that: \[ (\csc \theta + \cot \theta)(\csc \theta - \cot \theta) = 1. \] This confirms the identity is true!