Pregunta
upstudy study bank question image url

[ION 2 \( 7 ; x ; y ;-11 ; \ldots \) is an arithmetic sequence. Determine the values of \( x \) and \( y \). (4) Given the quadratic number pattern: \( -3 ; 6 ; 27 ; 60 ; \ldots \) 2.2.1 Determine the general term of the pattern in the form \( T_{n}=a n^{2}+b n+c \). 2.2.2 Calculate the value of the \( 50^{\text {th }} \) term of the pattern. 2.2.3 Show that the sum of the first \( n \) first-differences of this pattern can be given by \( S_{n}=6 n^{2}+3 n \). 2.2.4 How many consecutive first-differences were added to the first term of the quadratic number pattern to obtain a term in the quadratic number pattern that has a value of 21060 ? [17 ION 3 Prove that \( \sum_{k=1}^{\infty} 4.3^{2-k} \) is a convergent geometric series. Show ALL your calculations. If \( \sum_{k=p}^{\infty} 4.3^{2-k}=\frac{2}{9} \), determine the value of \( p \). (3

Ask by Morgan Barrett. in South Africa
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

failed to answer the question

Solución

Sure, let's tackle each of these problems step by step. --- ## **ION 2** ### **Problem 7** **Given:** An arithmetic sequence \( 7 ; x ; y ; -11 ; \ldots \) **Find:** The values of \( x \) and \( y \). **Solution:** In an arithmetic sequence, the difference between consecutive terms is constant. Let's denote this common difference as \( d \). Given the sequence: - First term (\( a_1 \)) = 7 - Second term (\( a_2 \)) = \( x \) - Third term (\( a_3 \)) = \( y \) - Fourth term (\( a_4 \)) = -11 Using the property of arithmetic sequences: \[ a_{n} = a_{1} + (n-1)d \] Let's find the common difference \( d \) using the first and fourth terms. \[ a_4 = a_1 + 3d \\ -11 = 7 + 3d \\ -11 - 7 = 3d \\ -18 = 3d \\ d = -6 \] Now, find \( x \) and \( y \): \[ a_2 = a_1 + d = 7 + (-6) = 1 \\ a_3 = a_2 + d = 1 + (-6) = -5 \] **Answer:** - \( x = 1 \) - \( y = -5 \) --- ## **Quadratic Number Pattern** **Given Pattern:** \( -3 ; 6 ; 27 ; 60 ; \ldots \) ### **2.2.1 Determine the general term \( T_{n} = a n^{2} + b n + c \).** **Solution:** Assume the general term is quadratic: \[ T_n = an^2 + bn + c \] We can set up equations using the given terms: 1. For \( n = 1 \): \[ T_1 = a(1)^2 + b(1) + c = a + b + c = -3 \quad \text{(Equation 1)} \] 2. For \( n = 2 \): \[ T_2 = a(2)^2 + b(2) + c = 4a + 2b + c = 6 \quad \text{(Equation 2)} \] 3. For \( n = 3 \): \[ T_3 = a(3)^2 + b(3) + c = 9a + 3b + c = 27 \quad \text{(Equation 3)} \] Now, solve the system of equations. **Subtract Equation 1 from Equation 2:** \[ (4a + 2b + c) - (a + b + c) = 6 - (-3) \\ 3a + b = 9 \quad \text{(Equation 4)} \] **Subtract Equation 2 from Equation 3:** \[ (9a + 3b + c) - (4a + 2b + c) = 27 - 6 \\ 5a + b = 21 \quad \text{(Equation 5)} \] **Subtract Equation 4 from Equation 5:** \[ (5a + b) - (3a + b) = 21 - 9 \\ 2a = 12 \\ a = 6 \] **Substitute \( a = 6 \) into Equation 4:** \[ 3(6) + b = 9 \\ 18 + b = 9 \\ b = -9 \] **Substitute \( a = 6 \) and \( b = -9 \) into Equation 1:** \[ 6 - 9 + c = -3 \\ -3 + c = -3 \\ c = 0 \] **Answer:** \[ T_n = 6n^2 - 9n \] --- ### **2.2.2 Calculate the value of the \( 50^{\text{th}} \) term of the pattern.** **Solution:** Using the general term \( T_n = 6n^2 - 9n \): \[ T_{50} = 6(50)^2 - 9(50) = 6(2500) - 450 = 15000 - 450 = 14550 \] **Answer:** \( T_{50} = 14,\!550 \) --- ### **2.2.3 Show that the sum of the first \( n \) first-differences of this pattern can be given by \( S_{n} = 6n^{2} + 3n \).** **Solution:** First, find the first difference sequence. The first difference \( D_n = T_n - T_{n-1} \). Given \( T_n = 6n^2 - 9n \): \[ D_n = T_n - T_{n-1} = [6n^2 - 9n] - [6(n-1)^2 - 9(n-1)] \] \[ D_n = 6n^2 - 9n - [6(n^2 - 2n + 1) - 9n + 9] \] \[ D_n = 6n^2 - 9n - 6n^2 + 12n - 6 + 9n - 9 \] \[ D_n = (6n^2 - 6n^2) + (-9n + 12n + 9n) + (-6 - 9) \] \[ D_n = 12n - 15 \] Now, find the sum of the first \( n \) first-differences: \[ S_n = \sum_{k=1}^{n} D_k = \sum_{k=1}^{n} (12k - 15) \] \[ S_n = 12 \sum_{k=1}^{n} k - 15n \] \[ \sum_{k=1}^{n} k = \frac{n(n+1)}{2} \] \[ S_n = 12 \left( \frac{n(n+1)}{2} \right) - 15n = 6n(n+1) - 15n = 6n^2 + 6n - 15n = 6n^2 - 9n \] This contradicts the desired \( S_n = 6n^2 + 3n \). It seems there might be an error in the initial calculation. Wait, let's re-examine the first difference calculation. **Recalculating \( D_n \):** Given \( T_n = 6n^2 - 9n \), then: \[ D_n = T_n - T_{n-1} = (6n^2 - 9n) - [6(n-1)^2 - 9(n-1)] \] \[ = 6n^2 - 9n - [6(n^2 - 2n + 1) - 9n + 9] \] \[ = 6n^2 - 9n - 6n^2 + 12n - 6 + 9n - 9 \] \[ = (6n^2 - 6n^2) + (-9n + 12n + 9n) + (-6 -9) \] \[ = 12n - 15 \] Thus, \( D_n = 12n - 15 \). Now, sum \( D_n \) from \( k=1 \) to \( n \): \[ S_n = \sum_{k=1}^{n} (12k - 15) = 12 \sum_{k=1}^{n} k - 15n = 12 \cdot \frac{n(n+1)}{2} - 15n = 6n(n+1) - 15n = 6n^2 + 6n - 15n = 6n^2 - 9n \] But the problem states \( S_{n} = 6n^{2} + 3n \). There seems to be a discrepancy. However, considering the pattern provided: Given the sequence: \( -3 ; 6 ; 27 ; 60 ; \ldots \) Compute first differences: \[ 6 - (-3) = 9 \\ 27 - 6 = 21 \\ 60 - 27 = 33 \\ \] Differences: 9, 21, 33,... These differences themselves form an arithmetic sequence with a common difference of 12. Thus, the sum of the first \( n \) differences: \[ S_n = \sum_{k=1}^{n} (9 + 12(k-1)) = \sum_{k=1}^{n} (12k - 3) = 12 \cdot \frac{n(n+1)}{2} - 3n = 6n(n + 1) - 3n = 6n^2 + 6n - 3n = 6n^2 + 3n \] **Answer:** \[ S_n = 6n^2 + 3n \] --- ### **2.2.4 How many consecutive first-differences were added to the first term of the quadratic number pattern to obtain a term in the quadratic number pattern that has a value of 21,060?** **Solution:** We need to find \( n \) such that when adding the first \( n \) first-differences to the first term, the resulting term is 21,060. Given: - First term (\( T_1 \)) = -3 - Sum of first \( n \) first-differences (\( S_n \)) = 6n^2 + 3n - Desired term (\( T \)) = 21,060 The relationship is: \[ T = T_1 + S_n \\ 21,060 = -3 + 6n^2 + 3n \\ 6n^2 + 3n - 21,063 = 0 \\ \] Divide the entire equation by 3 to simplify: \[ 2n^2 + n - 7,021 = 0 \] Now, solve the quadratic equation \( 2n^2 + n - 7021 = 0 \). Use the quadratic formula: \[ n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Where: - \( a = 2 \) - \( b = 1 \) - \( c = -7,021 \) Calculate the discriminant (\( \Delta \)): \[ \Delta = 1^2 - 4(2)(-7021) = 1 + 56,168 = 56,169 \] \[ \sqrt{56,169} = 237 \] Now, find \( n \): \[ n = \frac{-1 \pm 237}{4} \] We discard the negative solution as \( n \) must be positive: \[ n = \frac{-1 + 237}{4} = \frac{236}{4} = 59 \] **Answer:** 59 consecutive first-differences were added. --- ## **ION 3** ### **Problem** **Given:** \( \sum_{k=1}^{\infty} 4 \cdot 3^{2 - k} \) 1. **Prove that it is a convergent geometric series. Show all your calculations.** 2. **If \( \sum_{k=p}^{\infty} 4 \cdot 3^{2 - k} = \frac{2}{9} \), determine the value of \( p \).** ### **Solution:** #### **1. Prove that it is a convergent geometric series.** **Identify the series:** \[ \sum_{k=1}^{\infty} 4 \cdot 3^{2 - k} \] Simplify the general term: \[ a_k = 4 \cdot 3^{2 - k} = 4 \cdot 3^2 \cdot 3^{-k} = 4 \cdot 9 \cdot \left(\frac{1}{3}\right)^k = 36 \cdot \left(\frac{1}{3}\right)^k \] Recognize the geometric series form: \[ a_k = ar^{k} \] Comparing: \[ ar^{k} = 36 \cdot \left(\frac{1}{3}\right)^k \] Thus, the first term when \( k = 1 \): \[ a = 36 \cdot \left(\frac{1}{3}\right)^1 = 36 \cdot \frac{1}{3} = 12 \] The common ratio is: \[ r = \frac{1}{3} \] **Criteria for convergence of a geometric series:** A geometric series \( \sum ar^{k} \) converges if \( |r| < 1 \). Here, \( r = \frac{1}{3} \), and \( \left| \frac{1}{3} \right| < 1 \). **Conclusion:** Since \( |r| = \frac{1}{3} < 1 \), the series is convergent. **Answer:** The series is a convergent geometric series because the common ratio \( r = \frac{1}{3} \) satisfies \( |r| < 1 \). #### **2. Determine the value of \( p \) if \( \sum_{k=p}^{\infty} 4 \cdot 3^{2 - k} = \frac{2}{9} \).** **Solution:** Given: \[ \sum_{k=p}^{\infty} 4 \cdot 3^{2 - k} = \frac{2}{9} \] Simplify the series: \[ \sum_{k=p}^{\infty} 4 \cdot 3^{2 - k} = \sum_{k=p}^{\infty} 36 \cdot \left(\frac{1}{3}\right)^k \] This is a geometric series with: \[ a = 36 \cdot \left(\frac{1}{3}\right)^p \quad \text{and} \quad r = \frac{1}{3} \] The sum of an infinite geometric series starting from \( k = p \): \[ S = \frac{a}{1 - r} = \frac{36 \cdot \left(\frac{1}{3}\right)^p}{1 - \frac{1}{3}} = \frac{36 \cdot \left(\frac{1}{3}\right)^p}{\frac{2}{3}} = 36 \cdot \left(\frac{1}{3}\right)^p \cdot \frac{3}{2} = 54 \cdot \left(\frac{1}{3}\right)^p \] Set this equal to \( \frac{2}{9} \): \[ 54 \cdot \left(\frac{1}{3}\right)^p = \frac{2}{9} \] Divide both sides by 54: \[ \left(\frac{1}{3}\right)^p = \frac{2}{9} \div 54 = \frac{2}{9 \times 54} = \frac{2}{486} = \frac{1}{243} \] Express \( \frac{1}{243} \) as \( \left(\frac{1}{3}\right)^5 \) since \( 3^5 = 243 \): \[ \left(\frac{1}{3}\right)^p = \left(\frac{1}{3}\right)^5 \] Therefore: \[ p = 5 \] **Answer:** \( p = 5 \) ---

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

In arithmetic sequences, a crucial factor is the common difference. To find \( x \) and \( y \) in \( 7; x; y; -11; \ldots \), you'll want to use the property that the difference between consecutive terms is constant. By setting up equations, you can find \( x = -1 \) and \( y = -9 \) based on the difference calculated from \( 7 \) to \( -11 \). For the quadratic sequence \( -3; 6; 27; 60; \ldots \), running through the differences can guide you to form the \( T_n \) equation. The differences between these terms suggest a second-degree polynomial, giving you a general term of the form \( T_n = an^2 + bn + c \). Solving for coefficients through the technique of simultaneous equations can yield a completed formula, and manipulating the resulting values will eventually lead you to find the 50th term or the sum of first-differences.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad