Pregunta
upstudy study bank question image url

A function of the form \( f(x)=a b^{x} \) is modified so that the \( b \) value remains the same but the a value is increased by 2 . How do the domain and range of the new function compare to the domain and range of the original function? Check all that apply. The range stays the same. The range becomes \( y>2 \). The domain stays the same. The domain becomes \( x>2 \). The range becomes \( y \geq 2 \). The domain becomes \( x \geq 2 \).

Ask by Clark Coleman. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The domain and range remain the same after increasing the \( a \) value by 2.

Solución

When modifying the function \( f(x) = a b^x \) to \( f_{\text{new}}(x) = (a + 2) b^x \), let's analyze how the domain and range are affected: 1. **Domain:** - **Original Function:** The domain of \( f(x) = a b^x \) is all real numbers, \( \mathbb{R} \), since exponential functions are defined for every real \( x \). - **Modified Function:** The new function \( f_{\text{new}}(x) = (a + 2) b^x \) retains the same exponential structure. Therefore, the domain remains all real numbers, \( \mathbb{R} \). 2. **Range:** - **Original Function:** Assuming \( a > 0 \) and \( b > 0 \) with \( b \neq 1 \), the range of \( f(x) = a b^x \) is \( y > 0 \). - **Modified Function:** By increasing \( a \) by 2, resulting in \( a + 2 \), the coefficient remains positive if \( a > -2 \) (which is a reasonable assumption to maintain the exponential behavior). Hence, the range of \( f_{\text{new}}(x) = (a + 2) b^x \) also remains \( y > 0 \). **Summary:** - **The domain stays the same.** - **The range stays the same.** **Checked Statements:** - The range stays the same. - The domain stays the same. Answer: All statements that “The range stays the same” and “The domain stays the same” are correct.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

The domain of the function \( f(x) = a b^x \) is all real numbers \( (-\infty, \infty) \), and this does not change when you modify the value of \( a \). Therefore, the domain stays the same in the modified function as well. For the range, the original function \( f(x) \) has values that depend on \( a \). When \( a \) increases by 2, if \( a \) was originally positive, the new minimum value of the range shifts up by 2, resulting in the range becoming \( y \geq (a + 2) \). So, if \( a \) was non-negative, the range becomes \( y \geq 2 \). Thus, the range does shift upward, but it won’t be limited to just \( y > 2 \) unless stated that \( a \) was initially less than 2. In summary: - The range becomes \( y \geq 2 \) (if \( a \) originally allowed for this). - The domain stays the same.

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad