Pregunta
upstudy study bank question image url

Question two: The following Matrix gives the number of units of three product ( \( \mathrm{M}, \mathrm{N} \) and O ), that can be processed per hour on three machines ( \( \mathrm{I}, \mathrm{II} \) and III) \[ \begin{array}{lll}\text { I } & \text { II } & \text { III }\end{array} \] \[ N\left[\begin{array}{lll}10 & 12 & 15 \\ 20 & 11 & 20 \\ 16 & 18 & 14\end{array}\right] \] Determine by using matrix algebra, how many units of each product can be produced, if the hours available on machine I, II and III are 50,40 and 42

Ask by Lambert Williams. in Tanzania
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The production of product M is not feasible with the given machine hours. Products N and O can be produced approximately 1.86 and 3.58 units, respectively.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Bonus Knowledge

To find the number of units of products \( \mathrm{M}, \mathrm{N}, \) and \( \mathrm{O} \) that can be produced using matrix algebra, we can set up a system of equations based on the given matrix and the available hours for each machine. Let \( x_1, x_2, \) and \( x_3 \) be the number of units produced of products \( \mathrm{M}, \mathrm{N}, \) and \( \mathrm{O} \), respectively. We will use the matrix of processing capabilities and the hours available for each machine to create the equation: \[ \begin{bmatrix} 10 & 12 & 15 \\ 20 & 11 & 20 \\ 16 & 18 & 14 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 50 \\ 40 \\ 42 \end{bmatrix} \] By solving this matrix equation using techniques such as Gaussian elimination or using an inverse matrix, you'll find the values of \( x_1, x_2, \) and \( x_3 \). One fun historical tip: the concept of using linear algebra and matrix methods to solve real-world problems dates back to ancient civilizations! While matrices became formalized in the 19th century, similar systems can be traced back to various historical applications like resource allocation in agriculture or inventory management in trade. For practical application in today's world, businesses regularly utilize matrix algebra for resource optimization. For instance, manufacturers might use these calculations to determine how many products to produce based on limited machine time and different product line efficiencies. This not only saves time but also maximizes profit, helping to streamline operations in a fun, dynamic way!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad