Pregunta
upstudy study bank question image url

16 Find the LCM of 8 and 12 . The LCM is

Ask by Donnelly Crawford. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The LCM of 8 and 12 is 24.

Solución

To find the **Least Common Multiple (LCM)** of 8 and 12, you can use the **prime factorization** method or list the multiples of each number and identify the smallest common one. ### Method 1: Prime Factorization 1. **Factorize each number into primes:** - **8** can be written as \(2^3\) - **12** can be written as \(2^2 \times 3\) 2. **Identify the highest power of each prime number present:** - For the prime number **2**, the highest power is \(2^3\) (from 8). - For the prime number **3**, the highest power is \(3^1\) (from 12). 3. **Multiply these highest powers together:** \[ LCM = 2^3 \times 3 = 8 \times 3 = 24 \] ### Method 2: Listing Multiples 1. **List the multiples of each number:** - **Multiples of 8:** 8, 16, 24, 32, 40, ... - **Multiples of 12:** 12, 24, 36, 48, 60, ... 2. **Identify the smallest common multiple:** - The smallest number that appears in both lists is **24**. ### Conclusion The **LCM of 8 and 12 is 24**. **Answer:** The LCM of 8 and 12 is 24.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the LCM of 8 and 12, you can break them down into their prime factors. The prime factorization of 8 is \(2^3\) and for 12, it's \(2^2 \times 3\). The LCM is found by taking the highest powers of all prime factors: \(2^3\) (from 8) and \(3^1\) (from 12). So, the LCM is \(2^3 \times 3^1 = 8 \times 3 = 24\). Voila! The LCM of 8 and 12 is 24! Did you know that the concept of LCM has roots in ancient mathematics? The Babylonians were some of the first recorded mathematicians to play around with ideas similar to LCM over 4000 years ago! They developed ways to work with numbers that helped in trade and measurement, which are pretty much the same reasons we use LCM today. In real-world scenarios, knowing the LCM can be incredibly handy! For instance, if you’re planning events that occur every 8 days and another event that happens every 12 days, the LCM tells you when both events will coincide. So, mark your calendars! The two events will align every 24 days!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad