Pregunta
upstudy study bank question image url

If the first 5 terms of a geometric sequence are \( \left\{12,6,3, \frac{3}{2}, \frac{3}{4}\right\} \) then the formula for the \( n^{\text {th }} \) term in the sequence is a.) \( a_{n}=12 \cdot 2^{n-1} \) b.) \( a_{n}=\left(\frac{1}{2}\right) \cdot 12^{n-1} \) c.) \( a_{n}=2 \cdot 12^{n-1} \) d.) \( a_{n}=12 \cdot\left(\frac{1}{2}\right)^{n-1} \) (

Ask by Olson Chan. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The formula for the \( n^{\text{th}} \) term is \( a_{n}=12 \cdot\left(\frac{1}{2}\right)^{n-1} \).

Solución

To determine the formula for the \( n^{\text{th}} \) term of the given geometric sequence \( \left\{12, 6, 3, \frac{3}{2}, \frac{3}{4}\right\} \), follow these steps: 1. **Identify the First Term (\( a_1 \)) and the Common Ratio (\( r \)):** - The first term \( a_1 \) is **12**. - To find the common ratio \( r \), divide the second term by the first term: \[ r = \frac{6}{12} = \frac{1}{2} \] - Verify the ratio with subsequent terms: \[ \frac{3}{6} = \frac{1}{2}, \quad \frac{\frac{3}{2}}{3} = \frac{1}{2}, \quad \frac{\frac{3}{4}}{\frac{3}{2}} = \frac{1}{2} \] The common ratio \( r \) is consistently \( \frac{1}{2} \). 2. **Use the Formula for the \( n^{\text{th}} \) Term of a Geometric Sequence:** The general formula for the \( n^{\text{th}} \) term of a geometric sequence is: \[ a_n = a_1 \cdot r^{n-1} \] Substituting the known values: \[ a_n = 12 \cdot \left(\frac{1}{2}\right)^{n-1} \] 3. **Compare with the Given Options:** - **Option d.)** \( a_n = 12 \cdot \left(\frac{1}{2}\right)^{n-1} \) matches our derived formula. **Answer:** d.) \( a_{n}=12 \cdot\left(\frac{1}{2}\right)^{n-1} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

In a geometric sequence, each term is obtained by multiplying the previous term by a constant ratio. In this case, the first term is 12, and the common ratio is \(\frac{1}{2}\) (as seen from moving from 12 to 6, and so forth). Therefore, we can formulate the \( n^{\text{th}} \) term as \( a_n = 12 \cdot \left(\frac{1}{2}\right)^{n-1} \). As for real-world applications, geometric sequences can be found in various scenarios, such as calculating population growth under ideal conditions, determining the depreciation of an asset over time, or even modeling the spread of a virus in its initial stages. Recognizing these patterns helps us understand not just theoretical math, but also real-life trends and changes!

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad