Determine whether the function is even, odd, or neither. Then determine whether the function's graph is symmetric with respect to the \( y \)-axis, the origin, or neither. \( f(x)=x \sqrt{4-x^{4}} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To determine whether the function \( f(x) = x \sqrt{4 - x^4} \) is even, odd, or neither, we can test \( f(-x) \): \[ f(-x) = -x \sqrt{4 - (-x)^4} = -x \sqrt{4 - x^4} = -f(x) \] Since \( f(-x) = -f(x) \), the function is odd. This implies that the graph is symmetric with respect to the origin. Now, let's talk about where this function is defined. Notice that the expression under the square root (\( 4 - x^4 \)) must be non-negative for values of \( x \) to keep \( f(x) \) real. Hence, \( x^4 \leq 4 \), or \( -\sqrt[4]{4} \leq x \leq \sqrt[4]{4} \). This will ultimately impact the visual interpretation of the graph.