Given the following: \( { }_{19}^{41} \mathrm{X},{ }_{19}^{39} \mathrm{X},{ }_{20}^{41} \mathrm{X} \), and \( { }_{18}^{39} \mathrm{X} \). Which are isotopes of each other? \( \begin{array}{l}{ }_{19}^{41} \mathrm{X},{ }_{19}^{39} \mathrm{X},{ }_{20}^{41} \mathrm{X} \text {, and }{ }_{18}^{39} \mathrm{X} \text { are isotopes of each other. } \\ { }_{19}^{41} \mathrm{X} \text { and }{ }_{20}^{41} \mathrm{X} \text { are isotopes of each other, and }{ }_{19}^{39} \mathrm{X} \text { and }{ }_{18}^{39} \mathrm{X} \text { are isotopes of each other. } \\ { }_{19}^{41} \mathrm{X} \text { and }{ }_{19}^{39} \mathrm{X} \text { are isotopes of each other. } \\ \text { None are isotopes of each other. }\end{array} \).
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
Isotopes are atoms of the same element that have the same number of protons but different numbers of neutrons. In this case, \( { }_{19}^{41} \mathrm{X} \) and \( { }_{19}^{39} \mathrm{X} \) are isotopes of each other because they both have 19 protons (indicating they are the same element) but differ in their atomic mass due to a different number of neutrons. Similarly, \( { }_{18}^{39} \mathrm{X} \) cannot be an isotope of these two since it has only 18 protons, which means it is not the same element. On the flip side, \( { }_{20}^{41} \mathrm{X} \) represents a different element with 20 protons, thus it is not an isotope of the other two even though they share the same atomic mass. Essentially, only \( { }_{19}^{41} \mathrm{X} \) and \( { }_{19}^{39} \mathrm{X} \) are true isotopes of each other in this group.