Pregunta
upstudy study bank question image url

\begin{tabular}{l} How does \( f(t)=1.15^{t} \) change over the interval from \( t=4 \) to \( t=5 \) ? \\ \( f(t) \) decreases by a factor of 1.15 \\ \( f(t) \) decreases by 1.15 \\ \( f(t) \) increases by \( 115 \% \) \\ \( f(t) \) increases by a factor of 1.15 \\ \hline\end{tabular}

Ask by Matthews Campbell. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( f(t) \) increases by a factor of 1.15.

Solución

To determine how the function \( f(t) = 1.15^{t} \) changes from \( t = 4 \) to \( t = 5 \), let's analyze the function's behavior. 1. **Calculate \( f(4) \) and \( f(5) \):** \[ f(4) = 1.15^{4} \approx 1.7490 \] \[ f(5) = 1.15^{5} \approx 2.0114 \] 2. **Determine the Change:** \[ \text{Change Factor} = \frac{f(5)}{f(4)} = \frac{1.15^{5}}{1.15^{4}} = 1.15 \] This means that \( f(t) \) increases by a factor of **1.15** when \( t \) increases from 4 to 5. 3. **Interpretation:** - **Increasing by a factor of 1.15** implies that the function's value at \( t = 5 \) is **115%** of its value at \( t = 4 \), which is a 15% increase. - The other options suggesting a decrease are incorrect since the base of the exponential function (1.15) is greater than 1, indicating growth, not decay. **Correct Statement:** - \( f(t) \) increases by a **factor of 1.15**. **Answer:** \(\boxed{\,f(t)\ \text{increases by a factor of 1.15}\,}\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

At \( t=4 \), we have \( f(4) = 1.15^4 \). When we calculate \( f(5) \), it becomes \( f(5) = 1.15^5 \). The function \( f(t) \) is exponential, which means it will increase as \( t \) increases! In fact, moving from \( t=4 \) to \( t=5 \), \( f(t) \) increases by a factor of \( 1.15 \). So the correct answer is that \( f(t) \) increases by a factor of \( 1.15 \). To truly understand this exponential growth, think of compound interest or population growth. Each time unit (in our case, each time step \( t \)) represents not just a simple linear increase, but a multiplication of the previous value, showcasing how powerful exponential functions can be in real-life scenarios! Imagine an investment at \( 1.15^{t} \) growing over time—exactly how your money can become much better with the right rate!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad