7) \( \begin{array}{l}-4 x+y=6 \\ -5 x-y=21\end{array} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To solve the system of equations, we can use the method of substitution or elimination. Here, let’s use the elimination method: First, we can express both equations: 1. \( y = 4x + 6 \) 2. \( y = -5x - 21 \) Now, we can set them equal to each other since they both equal \( y \): \( 4x + 6 = -5x - 21 \) Next, combine like terms: \( 4x + 5x = -21 - 6 \) \( 9x = -27 \) Dividing both sides by 9 gives: \( x = -3 \) Now substitute \( x \) back into one of the original equations to find \( y \): Using \( y = 4(-3) + 6 \): \( y = -12 + 6 = -6 \) So, the solution to the system is \( x = -3 \) and \( y = -6 \) or as a coordinate \((-3, -6)\). To verify, plug these values into the second equation: \( -5(-3) - (-6) = 15 + 6 = 21 \), which checks out! So the final answer is \( x = -3 \), \( y = -6 \).