Solve the equation by the square root property. \( (x-7)^{2}=36 \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To solve the equation \( (x-7)^{2}=36 \) using the square root property, start by taking the square root of both sides. This gives you two possible equations: \( x - 7 = 6 \) or \( x - 7 = -6 \). Now, solve for \( x \) in both cases. For the first equation: 1. \( x - 7 = 6 \) \( x = 6 + 7 \) \( x = 13 \) For the second equation: 2. \( x - 7 = -6 \) \( x = -6 + 7 \) \( x = 1 \) Thus, the solutions to the equation are \( x = 13 \) and \( x = 1 \). To double-check, substitute both values back into the original equation to ensure they satisfy it. Both do, confirming that the solutions are correct!