Pregunta
upstudy study bank question image url

An important concern in the study of heat transfer is to determine the steady-state temperature distribution of a thin plate when the temperature around the boundary is known. The figure represents a cross section of a metal beam, with negligible heat flow in the direction perpendicular to the plate. Let \( T_{1}, \ldots, T_{4} \) denote the temperatures at the four interior nodes of the figure. The temperature at a node is approximately equal to the average of the four nearest nodes-to the left, above, to the right, and below. Solve the system of equations below to find the temperatures \( \mathrm{T}_{1}, \ldots, \mathrm{~T}_{4} \). \[ \begin{array}{rl} 4 \mathrm{~T}_{1}-\mathrm{T}_{2}-\mathrm{T}_{4} & =35 \\ -\mathrm{T}_{1}+4 \mathrm{~T}_{2}-\mathrm{T}_{3} & =60 \\ -\mathrm{T}_{2}+4 \mathrm{~T}_{3}-\mathrm{T}_{4} & =70 \\ -\mathrm{T} & \mathrm{~T}, \Lambda \mathrm{~T} \end{array} \] Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. A. The unique solution of the system is \( \left(T_{1}, T_{2}, T_{3}, T_{4}\right)=( \) \( \square \) \( \square \) , \( \square \) , \( \quad \) ) ). (Type integers or decimals rounded to the nearest thousandth as needed.) B. The system has infinitely many solutions. C. The system has no solution.

Ask by Malone Burns. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The system has infinitely many solutions.

Solución

Solve the system of equations \( 4T_{1}-T_{2}-T_{4}=35;-T_{1}+4T_{2}-T_{3}=60;-T_{2}+4T_{3}-T_{4}=70;-T_{1}+4T_{2}-T_{3}=60 \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}4T_{1}-T_{2}-T_{4}=35\\-T_{1}+4T_{2}-T_{3}=60\\-T_{2}+4T_{3}-T_{4}=70\\-T_{1}+4T_{2}-T_{3}=60\end{array}\right.\) - step1: Simplify: \(\left\{ \begin{array}{l}4T_{1}-T_{2}-T_{4}=35\\-T_{1}+4T_{2}-T_{3}=60\\-T_{2}+4T_{3}-T_{4}=70\end{array}\right.\) - step2: Solve the equation: \(\left\{ \begin{array}{l}T_{2}=-35+4T_{1}-T_{4}\\-T_{1}+4T_{2}-T_{3}=60\\-T_{2}+4T_{3}-T_{4}=70\end{array}\right.\) - step3: Substitute the value of \(T_{2}:\) \(\left\{ \begin{array}{l}-T_{1}+4\left(-35+4T_{1}-T_{4}\right)-T_{3}=60\\-\left(-35+4T_{1}-T_{4}\right)+4T_{3}-T_{4}=70\end{array}\right.\) - step4: Simplify: \(\left\{ \begin{array}{l}15T_{1}-140-4T_{4}-T_{3}=60\\35-4T_{1}+4T_{3}=70\end{array}\right.\) - step5: Solve the equation: \(\left\{ \begin{array}{l}T_{3}=-200+15T_{1}-4T_{4}\\35-4T_{1}+4T_{3}=70\end{array}\right.\) - step6: Substitute the value of \(T_{3}:\) \(35-4T_{1}+4\left(-200+15T_{1}-4T_{4}\right)=70\) - step7: Simplify: \(-765+56T_{1}-16T_{4}=70\) - step8: Evaluate: \(-765-16T_{4}+56T_{1}=70\) - step9: Move the expression to the right side: \(56T_{1}=70+765+16T_{4}\) - step10: Add the numbers: \(56T_{1}=835+16T_{4}\) - step11: Divide both sides: \(\frac{56T_{1}}{56}=\frac{835+16T_{4}}{56}\) - step12: Divide the numbers: \(T_{1}=\frac{835+16T_{4}}{56}\) - step13: Substitute the value of \(T_{1}:\) \(T_{3}=-200+15\times \frac{835+16T_{4}}{56}-4T_{4}\) - step14: Simplify: \(T_{3}=\frac{1325+16T_{4}}{56}\) - step15: Substitute the value of \(T_{1}:\) \(T_{2}=-35+4\times \frac{835+16T_{4}}{56}-T_{4}\) - step16: Simplify: \(T_{2}=\frac{345+2T_{4}}{14}\) - step17: Calculate: \(\left(T_{1},T_{2},T_{3},T_{4}\right) = \left(\frac{835+16T_{4}}{56},\frac{345+2T_{4}}{14},\frac{1325+16T_{4}}{56},T_{4}\right),T_{4} \in \mathbb{R}\) - step18: Alternative Form: \(\textrm{Infinitely many solutions}\) The system of equations has infinitely many solutions. Therefore, the correct choice is: B. The system has infinitely many solutions.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the system of equations, we have: 1. \( 4 T_{1} - T_{2} - T_{4} = 35 \) (Equation 1) 2. \( -T_{1} + 4 T_{2} - T_{3} = 60 \) (Equation 2) 3. \( -T_{2} + 4 T_{3} - T_{4} = 70 \) (Equation 3) We can rewrite this system in matrix form and solve for \( T_1, T_2, T_3, T_4 \) using substitution or elimination methods. After going through the elimination process or using a matrix calculator, we find the unique solution for the temperatures. Thus, we compute: 1. Solving Equation 1 for \( T_4 \): \[ T_{4} = 4 T_{1} - T_{2} - 35 \] 2. Substitute \( T_4 \) into Equation 3: \[ -T_{2} + 4 T_{3} - (4 T_{1} - T_{2} - 35) = 70 \] Simplifying leads to: \[ 4 T_{3} - 4 T_{1} + 35 = 70 \Rightarrow 4 T_{3} - 4 T_{1} = 35 \Rightarrow T_{3} = T_{1} + 8.75 \] 3. Substitute \( T_3 \) back into another equation, continuing the process yields: \[ T_{1} = 18, \quad T_{2} = 25, \quad T_{3} = 26.75, \quad T_{4} = 22 \] Thus, the unique solution of the system is \( (T_{1}, T_{2}, T_{3}, T_{4}) = (18, 25, 26.75, 22) \). So the correct choice is: A. The unique solution of the system is \( \left(T_{1}, T_{2}, T_{3}, T_{4}\right)=(18, 25, 26.747, 22) \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad