Pregunta
upstudy study bank question image url

\( X \) is a normally distributed random variable with mean 55 and standard deviation 18 . What is the probability that \( X \) is between 73 and 91 ? Use the \( 0.68-0.95-0.997 \) rule and write your answer as a decimal. Round to the nearest thousandth if necessary.

Ask by Bernard Johnston. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( X \) is between 73 and 91 is approximately 0.136.

Solución

To find the probability that \( X \) is between 73 and 91 for a normally distributed random variable with mean \( \mu = 55 \) and standard deviation \( \sigma = 18 \), we can follow these steps: 1. **Standardize the values**: We will convert the values 73 and 91 into z-scores using the formula: \[ z = \frac{(X - \mu)}{\sigma} \] 2. **Calculate the z-scores**: - For \( X = 73 \): \[ z_1 = \frac{(73 - 55)}{18} \] - For \( X = 91 \): \[ z_2 = \frac{(91 - 55)}{18} \] 3. **Use the z-scores to find probabilities**: We will then look up the probabilities corresponding to these z-scores in the standard normal distribution table or use the empirical rule. Let's calculate the z-scores first. ### Step 1: Calculate z-scores Calculating \( z_1 \) and \( z_2 \): \[ z_1 = \frac{(73 - 55)}{18} = \frac{18}{18} = 1 \] \[ z_2 = \frac{(91 - 55)}{18} = \frac{36}{18} = 2 \] ### Step 2: Find probabilities Using the empirical rule: - Approximately 68% of the data falls within 1 standard deviation of the mean. - Approximately 95% of the data falls within 2 standard deviations of the mean. From the z-scores: - The probability that \( X \) is less than 73 (which corresponds to \( z_1 = 1 \)) is approximately \( 0.8413 \). - The probability that \( X \) is less than 91 (which corresponds to \( z_2 = 2 \)) is approximately \( 0.9772 \). ### Step 3: Calculate the probability between 73 and 91 To find the probability that \( X \) is between 73 and 91, we subtract the probability of \( X < 73 \) from the probability of \( X < 91 \): \[ P(73 < X < 91) = P(X < 91) - P(X < 73) = 0.9772 - 0.8413 \] Now, let's calculate this: \[ P(73 < X < 91) = 0.9772 - 0.8413 = 0.1359 \] ### Final Answer Thus, the probability that \( X \) is between 73 and 91 is approximately \( 0.136 \) when rounded to the nearest thousandth.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the probability that \( X \) is between 73 and 91 using the \( 0.68-0.95-0.997 \) rule, we first standardize the values of \( X \) using the Z-score formula: \[ Z = \frac{X - \mu}{\sigma} \] For \( X = 73 \): \[ Z(73) = \frac{73 - 55}{18} = 1.000 \] For \( X = 91 \): \[ Z(91) = \frac{91 - 55}{18} = 2.000 \] Now, we know that about 68% of the data falls within 1 standard deviation of the mean, and about 95% falls within 2 standard deviations. Therefore, we want to find the probability between these two Z-scores. The area between \( Z = 1 \) and \( Z = 2 \): - The area to the left of \( Z = 2 \) is about 0.9772 (from Z-tables). - The area to the left of \( Z = 1 \) is about 0.8413. Now, subtract the two probabilities: \[ P(73 < X < 91) = P(Z < 2) - P(Z < 1) \] \[ P(73 < X < 91) = 0.9772 - 0.8413 = 0.1359 \] Thus, the probability that \( X \) is between 73 and 91 is approximately **0.136**, rounded to the nearest thousandth.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad