Pregunta
22 If right triattgle \( A B C \) has sides \( b=7 \) and \( c=24 \), then which of the follarwing is a possible value for the perimeter of triangle \( A B C \) ? A) 50 B) 25 C) 56 D) 84
Ask by O'Quinn Garza. in Egypt
Jan 04,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The perimeter of triangle \( ABC \) is 56.
**Answer:** C) 56
Solución
To determine a possible perimeter for the right triangle \( \triangle ABC \) with sides \( b = 7 \) and \( c = 24 \), we can use the Pythagorean theorem.
Assuming that the right angle is at vertex \( A \), sides \( b \) and \( c \) are the legs of the triangle, and side \( a \) (opposite the right angle) is the hypotenuse. Using the Pythagorean theorem:
\[
a^2 = b^2 + c^2
\]
\[
a^2 = 7^2 + 24^2
\]
\[
a^2 = 49 + 576
\]
\[
a^2 = 625
\]
\[
a = \sqrt{625} = 25
\]
Now, the perimeter \( P \) of the triangle is the sum of all its sides:
\[
P = a + b + c = 25 + 7 + 24 = 56
\]
Therefore, the possible perimeter of triangle \( ABC \) is **56**.
**Answer:** C) 56
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To find the missing side \( a \) of the right triangle using the Pythagorean theorem \( a^2 + b^2 = c^2 \), we substitute the known values: \( a^2 + 7^2 = 24^2 \) \( a^2 + 49 = 576 \) \( a^2 = 576 - 49 = 527 \) \( a = \sqrt{527} \approx 22.91 \) Now we can find the perimeter \( P \) of triangle \( ABC \): \( P = a + b + c \approx 22.91 + 7 + 24 \approx 53.91 \) This means the perimeter value closest to our calculation is 50. So the answer is option A) 50.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium