Pregunta
upstudy study bank question image url

Write a linear function \( f \) that has the indicated values. Sketch the graph of \( f \). \( f(-5)=-15, f(2)=13 \) \( f(x)=\square \) (Simplify your answer. Type an expression using \( x \) as the variable. Type your answer in slope-intercept form.) Use the graphing tool to graph the function. Click to enlarge graph

Ask by Chadwick Rojas. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( f(x) = 4x + 5 \)

Solución

To find the linear function \( f(x) \) that satisfies \( f(-5) = -15 \) and \( f(2) = 13 \), we'll follow these steps: ### 1. Find the Slope (\( m \)) The slope of a linear function can be calculated using two points \((x_1, y_1)\) and \((x_2, y_2)\): \[ m = \frac{y_2 - y_1}{x_2 - x_1} \] Plugging in the given points \((-5, -15)\) and \((2, 13)\): \[ m = \frac{13 - (-15)}{2 - (-5)} = \frac{28}{7} = 4 \] ### 2. Find the Y-Intercept (\( b \)) Using the slope-intercept form \( f(x) = mx + b \) and one of the points (let's use \((2, 13)\)): \[ 13 = 4(2) + b \\ 13 = 8 + b \\ b = 13 - 8 \\ b = 5 \] ### 3. Write the Function Now that we have both \( m \) and \( b \): \[ f(x) = 4x + 5 \] ### 4. Graph the Function To sketch the graph of \( f(x) = 4x + 5 \): 1. **Y-Intercept:** Start at the point \( (0, 5) \) on the y-axis. 2. **Slope:** From the y-intercept, use the slope \( m = 4 \), which means "rise over run" is \( 4/1 \). Move up 4 units and right 1 unit to find another point. 3. **Plot the Points:** Using the given points \((-5, -15)\) and \((2, 13)\), plot these on the graph to ensure they lie on the line. 4. **Draw the Line:** Connect the points with a straight line, extending in both directions. Here's a simple representation of the graph: ``` y | 20| * 15| * 10| * 5 | * 0 |-------------------------- x -5| * -10| -15| ``` - The point \( (0, 5) \) is the y-intercept. - The point \( (2, 13) \) is another point on the line. - The point \( (-5, -15) \) is also on the line. ### Final Answer \[ f(x) = 4x + 5 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the linear function \( f(x) \), we first need to determine the slope \( m \) using the two given points: \( (-5, -15) \) and \( (2, 13) \). The formula for the slope is: \[ m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{13 - (-15)}{2 - (-5)} = \frac{13 + 15}{2 + 5} = \frac{28}{7} = 4. \] Next, we can use point-slope form to find the equation of the line. We will use point \( (2, 13) \): \[ f(x) - 13 = 4(x - 2). \] Simplifying this gives: \[ f(x) - 13 = 4x - 8 \implies f(x) = 4x + 5. \] So, the linear function is: \[ f(x) = 4x + 5. \] Now, for the sketch of the graph, you would plot points using the equation \( f(x) = 4x + 5 \). The y-intercept (where \( x=0 \)) is \( 5 \), and you can use the slope of \( 4 \) to plot additional points. For example, if you go one unit to the right (to \( x=1 \)), you go up \( 4 \) units, reaching \( (1, 9) \). Plotting these points and drawing a straight line through them will give you the graph of the function. Now, let's explore some interesting historical background and real-world applications related to linear functions! Linear functions have been around since ancient civilizations used them to solve practical problems such as land measurement. The ancient Greeks, particularly Euclid, laid the groundwork for algebra and geometric principles, allowing mathematicians to model relationships between quantities—essentially the first steps towards understanding linear equations. In the real world, linear functions are exceptionally useful! Engineers, economists, and data analysts regularly use them to model relationships and trends. For instance, you could use a linear function to forecast sales based on historical data, or an engineer might apply it to budget project costs based on the price per unit. These functions simplify complex relationships, making predictions just a bit easier!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad