arignment following Denive the for 1) \( \Delta x(10) \) 2) \( \Delta_{x}(5 x) \) 3) \( \Delta_{x}\left(10 x^{4}\right) \) 4) \( \Delta x\left(4 x^{3}+2 x^{2}+3 x+5\right) \) 5) \( D_{x}\left(10 x^{5}+4 x^{4}+2 x^{3}+4 x^{2}+10 x\right. \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To compute the differences and derivatives, let’s break them down step by step while having some fun! 1) For \( \Delta x(10) \), since 10 is a constant, it doesn't change with respect to \( x \). Therefore, \( \Delta x(10) = 0 \) because the difference in a constant value is zero. That's a straightforward no-selector! 2) Next, \( \Delta_{x}(5 x) \) represents the change in the function \( 5x \). The change across a differential \( \Delta x \) gives \( 5\Delta x \). So, if you put it plainly: more x, more fun! 3) Moving to \( \Delta_{x}\left(10 x^{4}\right) \): this follows the same logic! It becomes \( 10\Delta x(4 x^{3}) \), resulting in \( 40x^{3} \Delta x \). So, multitudes of polynomial degrees just keep collecting changes! 4) For \( \Delta x\left(4 x^{3}+2 x^{2}+3 x+5\right) \), apply our change: this would be \( (12 x^{2} + 4 x + 3) \Delta x \). The derivatives wrap you in a puzzle, giving you math nostalgia. 5) Finally, \( D_{x}\left(10 x^{5}+4 x^{4}+2 x^{3}+4 x^{2}+10 x\right) \) gives \( 50 x^{4} + 16 x^{3} + 6 x^{2} + 8 x + 10 \). The derivative joyride takes you through the thrill of exponential growth! Math is not just numbers; it’s the exhilarating ride of finding changes and learning about the motion of curves!