Pregunta
upstudy study bank question image url

A limited-edition poster increases in value each year with an initial value of \( \$ 18 \). After 1 year and an increase of \( 15 \% \) per year, the poster is worth \( \$ 20.70 \). Which equation can be used to find the value, \( y \), after \( x \) years? (Round money values to the nearest penny.) \( \begin{array}{l}y=10(1,15)^{x} \\ y=18(0.15)^{x} \\ y=20.7(1.15)^{x} \\ y=20.7(0.15)^{x} \\ y\end{array} \)

Ask by Davison Colon. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation to find the value \( y \) after \( x \) years is: \[ y = 18 \times (1.15)^x \]

Solución

To determine the equation that models the value of the limited-edition poster over time, we'll use the concept of exponential growth. ### Given: - **Initial value ( \( y_0 \) ):** \$18 - **Annual increase rate:** 15% (or 0.15 in decimal form) - **Value after 1 year:** \$20.70 ### Exponential Growth Formula: The general formula for exponential growth is: \[ y = y_0 \times (1 + r)^x \] Where: - \( y \) = value after \( x \) years - \( y_0 \) = initial value - \( r \) = annual growth rate - \( x \) = number of years ### Applying the Values: Plugging the given values into the formula: \[ y = 18 \times (1 + 0.15)^x \] \[ y = 18 \times (1.15)^x \] ### Verification: After 1 year (\( x = 1 \)): \[ y = 18 \times 1.15 = 20.70 \] This matches the value provided, confirming the correctness of the equation. ### Conclusion: The appropriate equation to model the value of the poster after \( x \) years is: \[ y = 18 \times (1.15)^x \] **Answer:** \[ y = 18 \times (1.15)^x \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the value of the limited-edition poster after \( x \) years, there's a fun little formula involving exponential growth that you can use! Since the value begins at \( \$18 \) and increases by \( 15\% \) each year, the equation you would want is: \[ y = 18(1.15)^{x} \] Although this exact option isn't listed among your choices, it's the right concept! When dealing with exponential growth, you multiply the initial value by \( (1 + \text{growth rate})^{\text{number of years}} \) to find the new value. For an exciting twist in real-world application, think about how this concept of compound growth doesn’t just apply to posters but also to investments! If you were to invest money in a savings account with a \( 15\% \) annual return, you’d use the same formula to determine how much you’d have in the future. Compounding can turn a small amount into a significant fortune over time, so always keep an eye on those creative investments!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad