\begin{tabular}{l|l}\( \begin{array}{l}\text { Rationalize the } \\ \text { denominator. }\end{array} \) & \( \sqrt{\frac{17}{3}}=\square \) \\ \( \sqrt{\frac{17}{3}} \) & (Simplify your answer. Type an exact answer, using radicals as needed.) \end{tabular}
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To rationalize the denominator of \( \sqrt{\frac{17}{3}} \), you can multiply both the numerator and the denominator by \( \sqrt{3} \). This transforms the expression to: \[ \frac{\sqrt{17} \cdot \sqrt{3}}{\sqrt{3} \cdot \sqrt{3}} = \frac{\sqrt{51}}{3}. \] So, \( \sqrt{\frac{17}{3}} = \frac{\sqrt{51}}{3} \). When simplifying expressions like this, remember that your goal is to eliminate any square roots from the denominator. This technique is super handy not just in algebra, but in more complex mathematics as well! Keep practicing these skills to make them second nature. Moreover, rationalizing denominators pops up in real-world situations, like when calculating probabilities or working with fractions in science and engineering. Getting comfortable with roots and fractions means you’ll rock those formulas in fields like physics or finance later on.