Pregunta
St Solve the following formula for the specified variable. \[ \begin{array}{l}B=\frac{1}{4} h(q+z) \text { for } q\end{array} \] \( q=\square \) (Simplify your answer)
Ask by Simmons Rodriguez. in the United States
Jan 26,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( q = \frac{4B}{h} - z \)
Solución
To solve the equation \( B = \frac{1}{4} h(q + z) \) for \( q \), follow these steps:
1. **Multiply both sides by 4** to eliminate the fraction:
\[
4B = h(q + z)
\]
2. **Divide both sides by \( h \)** to isolate \( q + z \):
\[
\frac{4B}{h} = q + z
\]
3. **Subtract \( z \)** from both sides to solve for \( q \):
\[
q = \frac{4B}{h} - z
\]
**Final Solution:**
\[
q = \frac{4B}{h} - z
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To solve for \( q \), we start by rearranging the equation \( B = \frac{1}{4} h(q + z) \). First, multiply both sides by 4 to eliminate the fraction: \[ 4B = h(q + z) \] Next, divide both sides by \( h \): \[ \frac{4B}{h} = q + z \] Finally, isolate \( q \) by subtracting \( z \) from both sides: \[ q = \frac{4B}{h} - z \] So, \( q = \frac{4B}{h} - z \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium