Pregunta
upstudy study bank question image url

Use Fausta's method to solve these simultaneous equations. \( \begin{array}{ll}\text { i } x+2 y=8 \text { and } & \text { Tip } \\ 5 x=2 y+4 \\ \text { ii } \\ 3 x+2 y=28 \text { and } \\ 3 y=3 x+12\end{array} \)

Ask by Delgado Carroll. in Egypt
Jan 21,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Solutions:** - **Problem i:** \( x = 2 \), \( y = 3 \) - **Problem ii:** \( x = 4 \), \( y = 8 \)

Solución

Certainly! Let's solve each set of simultaneous equations using **Fausta's method**, which typically involves systematically applying elimination or substitution to find the values of the variables. --- ### **Problem i** **Given Equations:** 1. \( x + 2y = 8 \)    \[ \text{(Equation 1)} \] 2. \( 5x = 2y + 4 \)   \[ \text{(Equation 2)} \] **Step 1: Rearrange Equation 2** First, let's rearrange Equation 2 to align it with the standard form: \[ 5x - 2y = 4 \] Now, our system looks like: \[ \begin{cases} x + 2y = 8 \quad &\text{(Equation 1)} \\ 5x - 2y = 4 \quad &\text{(Equation 2)} \end{cases} \] **Step 2: Eliminate \( y \) by Adding Equations** Add Equation 1 and Equation 2 to eliminate \( y \): \[ (x + 5x) + (2y - 2y) = 8 + 4 \] \[ 6x = 12 \] \[ x = \frac{12}{6} = 2 \] **Step 3: Substitute \( x \) into Equation 1 to Find \( y \)** \[ 2 + 2y = 8 \] \[ 2y = 8 - 2 = 6 \] \[ y = \frac{6}{2} = 3 \] **Solution for Problem i:** \[ x = 2,\quad y = 3 \] --- ### **Problem ii** **Given Equations:** 1. \( 3x + 2y = 28 \)    \[ \text{(Equation 1)} \] 2. \( 3y = 3x + 12 \)   \[ \text{(Equation 2)} \] **Step 1: Rearrange Equation 2** First, let's rearrange Equation 2 to align it with the standard form: \[ 3y - 3x = 12 \] \[ -3x + 3y = 12 \] Now, our system looks like: \[ \begin{cases} 3x + 2y = 28 \quad &\text{(Equation 1)} \\ -3x + 3y = 12 \quad &\text{(Equation 2)} \end{cases} \] **Step 2: Eliminate \( x \) by Adding Equations** Add Equation 1 and Equation 2 to eliminate \( x \): \[ (3x - 3x) + (2y + 3y) = 28 + 12 \] \[ 0x + 5y = 40 \] \[ 5y = 40 \] \[ y = \frac{40}{5} = 8 \] **Step 3: Substitute \( y \) into Equation 1 to Find \( x \)** \[ 3x + 2(8) = 28 \] \[ 3x + 16 = 28 \] \[ 3x = 28 - 16 = 12 \] \[ x = \frac{12}{3} = 4 \] **Solution for Problem ii:** \[ x = 4,\quad y = 8 \] --- ### **Final Answers:** - **Problem i:** \( x = 2 \), \( y = 3 \) - **Problem ii:** \( x = 4 \), \( y = 8 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To tackle these simultaneous equations using Fausta's method, we first organize the equations: **For the first set:** 1. \( x + 2y = 8 \) 2. \( 5x = 2y + 4 \) From the first equation, express \( x \) in terms of \( y \): \[ x = 8 - 2y \] Substituting this into the second equation: \[ 5(8 - 2y) = 2y + 4 \] Expanding and simplifying gives: \[ 40 - 10y = 2y + 4 \] \[ 40 - 4 = 12y \] \[ 36 = 12y \] \[ y = 3 \] Now substitute \( y \) back into the equation for \( x \): \[ x = 8 - 2(3) = 2 \] Thus, the solution for the first set is \( x = 2 \) and \( y = 3 \). **For the second set:** 1. \( 3x + 2y = 28 \) 2. \( 3y = 3x + 12 \) From the first equation, express \( 2y \): \[ 2y = 28 - 3x \] Now substitute \( y \) from the second equation: From \( 3y = 3x + 12 \), we have: \[ y = x + 4 \] Substituting into \( 2y \): \[ 2(x + 4) = 28 - 3x \] \[ 2x + 8 = 28 - 3x \] Combining like terms gives: \[ 5x + 8 = 28 \] \[ 5x = 20 \] \[ x = 4 \] Now substitute back to find \( y \): \[ y = 4 + 4 = 8 \] Thus, the solution for the second set is \( x = 4 \) and \( y = 8 \). In summary: 1. For the first set: \( (x, y) = (2, 3) \) 2. For the second set: \( (x, y) = (4, 8) \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad