Pregunta

Explain how the probability of two independent events occurring together is calculated.

Ask by Maxwell Wagner. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To find the probability of two independent events both happening, multiply their individual probabilities.

Solución

To calculate the probability of two independent events occurring together, we use the multiplication rule of probability. Here’s a step-by-step explanation: 1. **Understanding Independent Events**: - Two events, \( A \) and \( B \), are considered independent if the occurrence of one event does not affect the occurrence of the other. This means that knowing whether event \( A \) has occurred gives no information about whether event \( B \) has occurred, and vice versa. 2. **Defining Probabilities**: - Let \( P(A) \) be the probability of event \( A \) occurring. - Let \( P(B) \) be the probability of event \( B \) occurring. 3. **Calculating Joint Probability**: - The probability of both events \( A \) and \( B \) occurring together (denoted as \( P(A \cap B) \)) is calculated using the formula: \[ P(A \cap B) = P(A) \times P(B) \] - This formula states that to find the probability of both independent events happening, you multiply their individual probabilities. 4. **Example**: - Suppose the probability of rolling a 3 on a fair six-sided die (event \( A \)) is \( P(A) = \frac{1}{6} \). - Suppose the probability of flipping a heads on a fair coin (event \( B \)) is \( P(B) = \frac{1}{2} \). - The probability of both rolling a 3 and flipping heads is: \[ P(A \cap B) = P(A) \times P(B) = \frac{1}{6} \times \frac{1}{2} = \frac{1}{12} \] In summary, to find the probability of two independent events occurring together, simply multiply their individual probabilities.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To calculate the probability of two independent events occurring together, you simply multiply the probabilities of each event happening. For example, if Event A has a probability of 0.5 and Event B has a probability of 0.3, then the combined probability of both events occurring is 0.5 * 0.3 = 0.15. This means there's a 15% chance that both events will happen simultaneously! Now, while this might sound easy, a common mistake is to confuse independent events with dependent events. Remember, for the multiplication rule to apply, the outcome of one event shouldn't influence the other. So, if you mistakenly think the events affect each other, you could end up with incorrect calculations. Always check if the events are truly independent before multiplying away!

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad