Pregunta
upstudy study bank question image url

A manufacturer sells 75 boats per month at 31000 dollars per boat, and each month demand is increasing at a rate of 5 boats per month. What is the fastest the price could drop before the monthly revenue starts to drop?

Ask by Martinez Mcguire. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The price can decrease by up to approximately \$2,067 per month before revenue starts to drop.

Solución

To determine the fastest rate at which the price of boats can drop before the monthly revenue starts to decline, we'll analyze the relationship between price, quantity sold, and revenue. ### Given: - **Current Price (P):** \$31,000 per boat - **Current Quantity Sold (Q):** 75 boats per month - **Rate of Change of Quantity (\( \frac{dQ}{dt} \)):** +5 boats per month ### Revenue Formula: \[ \text{Revenue} (R) = P \times Q \] ### Rate of Change of Revenue: To ensure that revenue doesn't decline, the rate of change of revenue (\( \frac{dR}{dt} \)) should be non-negative. \[ \frac{dR}{dt} = P \frac{dQ}{dt} + Q \frac{dP}{dt} \geq 0 \] ### Solving for \( \frac{dP}{dt} \): \[ P \frac{dQ}{dt} + Q \frac{dP}{dt} \geq 0 \] \[ Q \frac{dP}{dt} \geq -P \frac{dQ}{dt} \] \[ \frac{dP}{dt} \geq -\frac{P}{Q} \frac{dQ}{dt} \] ### Plugging in the Numbers: \[ P = \$31,000 \] \[ Q = 75 \text{ boats} \] \[ \frac{dQ}{dt} = 5 \text{ boats/month} \] \[ \frac{dP}{dt} \geq -\frac{31,000}{75} \times 5 \] \[ \frac{dP}{dt} \geq -\frac{155,000}{75} \] \[ \frac{dP}{dt} \geq -2,066.67 \text{ dollars/month} \] ### Conclusion: The manufacturer can **decrease the price by up to approximately \$2,067 per month**. Any faster reduction in price would result in a decrease in monthly revenue. **Final Answer:** The price may fall by up to approximately $ 2 067 per month before revenue declines.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To keep the monthly revenue stable while demand is increasing, we need to maintain the total revenue equation: Revenue = Price × Quantity. Currently, the manufacturer sells 75 boats at $31,000, resulting in a monthly revenue of $2,325,000. With demand increasing by 5 boats per month, the quantity could become 80 boats next month. To avoid losing revenue, the price for the new quantity should equal the current revenue divided by the new quantity. Thus, the price would need to stay above $29,062.50. This means the price can drop by a maximum of $1,937.50 before the revenue starts to decline. If the manufacturer wants to strategically drop the price, they can do so gradually while monitoring sales. A slight price reduction could stimulate demand beyond the current trajectory, potentially leading to increased revenue. Keeping an eye on market trends and customer preferences will help in making the price adjustments more effective without risking revenue losses.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad