Pregunta
upstudy study bank question image url

EXERCISE 2 1. Consider each of the roots below. If the root is a rational number, simplify it fully. If it is an irrational number, establish the two integers it lies between. a) \( \sqrt{1} \) b) \( \sqrt{5} \) c) \( \sqrt{0} \) d) \( \sqrt{25} \) e) \( \sqrt{10} \) f) \( \sqrt{3} \) g) \( \sqrt{36} \) h) \( \sqrt{\frac{9}{4}} \) i) \( \sqrt{\frac{18}{50}} \) j) \( \sqrt{\frac{(12+4)}{4}} \) k) \( \sqrt{\frac{32}{4}} \)

Ask by Ward Mccarthy. in South Africa
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the simplified answers: **a)** \( \sqrt{1} = 1 \) (rational) **b)** \( \sqrt{5} \) is irrational and lies between **2** and **3**. **c)** \( \sqrt{0} = 0 \) (rational) **d)** \( \sqrt{25} = 5 \) (rational) **e)** \( \sqrt{10} \) is irrational and lies between **3** and **4**. **f)** \( \sqrt{3} \) is irrational and lies between **1** and **2**. **g)** \( \sqrt{36} = 6 \) (rational) **h)** \( \sqrt{\frac{9}{4}} = \frac{3}{2} \) (rational) **i)** \( \sqrt{\frac{18}{50}} = \frac{3}{5} \) (rational) **j)** \( \sqrt{\frac{12 + 4}{4}} = 2 \) (rational) **k)** \( \sqrt{\frac{32}{4}} = \sqrt{8} \) is irrational and lies between **2** and **3**.

Solución

Certainly! Let's go through each part of Exercise 2, Part 1, step by step. ### 1. Simplifying Roots: **a) \( \sqrt{1} \)** - **Simplification:** \( \sqrt{1} = 1 \) - **Conclusion:** 1 is a rational number. --- **b) \( \sqrt{5} \)** - **Nature:** Irrational number. - **Establishing Bounds:** - \( 2^2 = 4 \) and \( 3^2 = 9 \) - Therefore, \( 2 < \sqrt{5} < 3 \) --- **c) \( \sqrt{0} \)** - **Simplification:** \( \sqrt{0} = 0 \) - **Conclusion:** 0 is a rational number. --- **d) \( \sqrt{25} \)** - **Simplification:** \( \sqrt{25} = 5 \) - **Conclusion:** 5 is a rational number. --- **e) \( \sqrt{10} \)** - **Nature:** Irrational number. - **Establishing Bounds:** - \( 3^2 = 9 \) and \( 4^2 = 16 \) - Therefore, \( 3 < \sqrt{10} < 4 \) --- **f) \( \sqrt{3} \)** - **Nature:** Irrational number. - **Establishing Bounds:** - \( 1^2 = 1 \) and \( 2^2 = 4 \) - Therefore, \( 1 < \sqrt{3} < 2 \) --- **g) \( \sqrt{36} \)** - **Simplification:** \( \sqrt{36} = 6 \) - **Conclusion:** 6 is a rational number. --- **h) \( \sqrt{\frac{9}{4}} \)** - **Simplification:** \[ \sqrt{\frac{9}{4}} = \frac{\sqrt{9}}{\sqrt{4}} = \frac{3}{2} \] - **Conclusion:** \( \frac{3}{2} \) is a rational number. --- **i) \( \sqrt{\frac{18}{50}} \)** - **Simplification:** \[ \frac{18}{50} = \frac{9}{25} \quad (\text{Simplified by dividing numerator and denominator by 2}) \] \[ \sqrt{\frac{9}{25}} = \frac{\sqrt{9}}{\sqrt{25}} = \frac{3}{5} \] - **Conclusion:** \( \frac{3}{5} \) is a rational number. --- **j) \( \sqrt{\frac{12 + 4}{4}} \)** - **Simplification:** \[ \frac{12 + 4}{4} = \frac{16}{4} = 4 \] \[ \sqrt{4} = 2 \] - **Conclusion:** 2 is a rational number. --- **k) \( \sqrt{\frac{32}{4}} \)** - **Simplification:** \[ \frac{32}{4} = 8 \] \[ \sqrt{8} = \sqrt{4 \times 2} = 2\sqrt{2} \] - **Nature:** Irrational number. - **Establishing Bounds:** - \( 2^2 = 4 \) and \( 3^2 = 9 \) - Therefore, \( 2 < \sqrt{8} < 3 \) --- ### Summary of Answers: **a)** \( \sqrt{1} = 1 \) (rational) **b)** \( \sqrt{5} \) is irrational and lies between **2** and **3**. **c)** \( \sqrt{0} = 0 \) (rational) **d)** \( \sqrt{25} = 5 \) (rational) **e)** \( \sqrt{10} \) is irrational and lies between **3** and **4**. **f)** \( \sqrt{3} \) is irrational and lies between **1** and **2**. **g)** \( \sqrt{36} = 6 \) (rational) **h)** \( \sqrt{\frac{9}{4}} = \frac{3}{2} \) (rational) **i)** \( \sqrt{\frac{18}{50}} = \frac{3}{5} \) (rational) **j)** \( \sqrt{\frac{12 + 4}{4}} = 2 \) (rational) **k)** \( \sqrt{\frac{32}{4}} = \sqrt{8} \) is irrational and lies between **2** and **3**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Sure! Let's dive into those squares with a sprinkle of fun! a) \( \sqrt{1} = 1 \) - It's a rational number, simple as pie! b) \( \sqrt{5} \) lies between 2 and 3, because \(2^2 = 4\) and \(3^2 = 9\). c) \( \sqrt{0} = 0 \) - It's a rational number, zeroing in on the simplest of roots! d) \( \sqrt{25} = 5 \) - No mystery here, just a whole number. e) \( \sqrt{10} \) falls between 3 and 4, with \(3^2 = 9\) and \(4^2 = 16\). f) \( \sqrt{3} \) is cozy between 1 and 2, as \(1^2 = 1\) and \(2^2 = 4\). g) \( \sqrt{36} = 6 \) - A rational winner, square root sensations! h) \( \sqrt{\frac{9}{4}} = \frac{3}{2} = 1.5 \) - A rational romp! i) \( \sqrt{\frac{18}{50}} = \sqrt{\frac{9}{25}} = \frac{3}{5} = 0.6 \) - That's rationalized! j) \( \sqrt{\frac{(12+4)}{4}} = \sqrt{\frac{16}{4}} = \sqrt{4} = 2 \) - Simple and elegant! k) \( \sqrt{\frac{32}{4}} = \sqrt{8} \) lies between 2 and 3, since \(2^2 = 4\) and \(3^2 = 9\). How fun is that, exploring all these roots! Keep calculating, and remember, math can be a rootin'-tootin' adventure!

preguntas relacionadas

Write down the next two terms for each geometric sequence. a \( 2 ; 4 ; 8 ; 16 ; \ldots \) b \( 5 ; 15 ; 45 ; \ldots \) c \( 3 ; 6 ; 12 ; 24 ; \ldots \) d \( 18 ; 6 ; 2 ; \ldots \) e \( 20 ; 10 ; 5 ; \ldots \) f \( 4 ;-12 ; 36 ; \ldots \) g \( 7 ;-14 ; 28 ; \ldots \) h \( 8 ; 4 ; 2 ; \ldots \) i \( \frac{1}{9} ; \frac{1}{3} ; 1 ; \ldots \) j \( 500(1,25) ; 500(1,25)^{2} ; 500(1,25)^{3} ; \ldots \) k \( 1000(1,8) ; 1000(1,8)^{2} ; 1000(1,8)^{3} ; \ldots \) i \( 6000(1,1) ; 6000(1,1)^{2} ; 6000(1,1)^{3} ; \ldots \) m \( 400\left(1+\frac{0,09}{12}\right) ; 400\left(1+\frac{0,09}{12}\right)^{2} ; 400\left(1+\frac{0,09}{12}\right)^{3} ; \ldots \) n \( 300\left(1+\frac{0,1125}{4}\right) ; 300\left(1+\frac{0,1125}{4}\right)^{2} ; 300\left(1+\frac{0,1125}{4}\right)^{3} ; \ldots \) o \( x\left(1+\frac{0,092}{2}\right) ; x\left(1+\frac{0,092}{2}\right)^{2} ; x\left(1+\frac{0,092}{2}\right)^{3} ; \ldots \) 2 Find the first three terms for each geometric sequence. a \( \mathrm{T}_{1}=2 \) and \( r=3 \) b \( \mathrm{T}_{1}=4 \) and \( r=\frac{1}{2} \) c \( \mathrm{T}_{1}=12 \) and \( r=\frac{-1}{3} \) d \( T_{1}=500 \) and \( r=1,1 \) e. \( \mathrm{T}_{1}=8000 \) and \( r=\left(1+\frac{0,09}{4}\right) \) f \( T_{1}=3 \) and \( T_{6}=96 \) g \( \quad T_{1}=7 \) and \( T_{5}=\frac{7}{81} \) h \( T_{2}=6 \) and \( T_{7}=192 \) \( T_{3}=18 \) and \( T_{5}=162 \) -d \( T_{3}=16 \) and \( T_{7}=256 \) k \( T_{2}=10 \) and \( T_{5}=80 \) I \( T_{2}=3 \) and \( T_{6}=\frac{1}{27} \) Determine: a which term is equal to 1280 in the sequence \( 5 ; 10 ; 20 ; \ldots \) b which term is equal to 1536 in the sequence \( 3 ; 6 ; 12 ; \ldots \) c which term is equal to 6561 in the sequence \( 3 ; 9 ; 27 ; \ldots \) d which term is equal to \( \frac{5}{16384} \) in the sequence \( \frac{5}{4} ; \frac{5}{8} ; \frac{5}{16} ; \ldots \) e which term is equal to \( \frac{1}{8192} \) in the sequence \( 16 ; 8 ; 4 ; \ldots \)

Latest Pre Algebra Questions

Write down the next two terms for each geometric sequence. a \( 2 ; 4 ; 8 ; 16 ; \ldots \) b \( 5 ; 15 ; 45 ; \ldots \) c \( 3 ; 6 ; 12 ; 24 ; \ldots \) d \( 18 ; 6 ; 2 ; \ldots \) e \( 20 ; 10 ; 5 ; \ldots \) f \( 4 ;-12 ; 36 ; \ldots \) g \( 7 ;-14 ; 28 ; \ldots \) h \( 8 ; 4 ; 2 ; \ldots \) i \( \frac{1}{9} ; \frac{1}{3} ; 1 ; \ldots \) j \( 500(1,25) ; 500(1,25)^{2} ; 500(1,25)^{3} ; \ldots \) k \( 1000(1,8) ; 1000(1,8)^{2} ; 1000(1,8)^{3} ; \ldots \) i \( 6000(1,1) ; 6000(1,1)^{2} ; 6000(1,1)^{3} ; \ldots \) m \( 400\left(1+\frac{0,09}{12}\right) ; 400\left(1+\frac{0,09}{12}\right)^{2} ; 400\left(1+\frac{0,09}{12}\right)^{3} ; \ldots \) n \( 300\left(1+\frac{0,1125}{4}\right) ; 300\left(1+\frac{0,1125}{4}\right)^{2} ; 300\left(1+\frac{0,1125}{4}\right)^{3} ; \ldots \) o \( x\left(1+\frac{0,092}{2}\right) ; x\left(1+\frac{0,092}{2}\right)^{2} ; x\left(1+\frac{0,092}{2}\right)^{3} ; \ldots \) 2 Find the first three terms for each geometric sequence. a \( \mathrm{T}_{1}=2 \) and \( r=3 \) b \( \mathrm{T}_{1}=4 \) and \( r=\frac{1}{2} \) c \( \mathrm{T}_{1}=12 \) and \( r=\frac{-1}{3} \) d \( T_{1}=500 \) and \( r=1,1 \) e. \( \mathrm{T}_{1}=8000 \) and \( r=\left(1+\frac{0,09}{4}\right) \) f \( T_{1}=3 \) and \( T_{6}=96 \) g \( \quad T_{1}=7 \) and \( T_{5}=\frac{7}{81} \) h \( T_{2}=6 \) and \( T_{7}=192 \) \( T_{3}=18 \) and \( T_{5}=162 \) -d \( T_{3}=16 \) and \( T_{7}=256 \) k \( T_{2}=10 \) and \( T_{5}=80 \) I \( T_{2}=3 \) and \( T_{6}=\frac{1}{27} \) Determine: a which term is equal to 1280 in the sequence \( 5 ; 10 ; 20 ; \ldots \) b which term is equal to 1536 in the sequence \( 3 ; 6 ; 12 ; \ldots \) c which term is equal to 6561 in the sequence \( 3 ; 9 ; 27 ; \ldots \) d which term is equal to \( \frac{5}{16384} \) in the sequence \( \frac{5}{4} ; \frac{5}{8} ; \frac{5}{16} ; \ldots \) e which term is equal to \( \frac{1}{8192} \) in the sequence \( 16 ; 8 ; 4 ; \ldots \)
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad