Responder
Here are the simplified answers:
**a)** \( \sqrt{1} = 1 \) (rational)
**b)** \( \sqrt{5} \) is irrational and lies between **2** and **3**.
**c)** \( \sqrt{0} = 0 \) (rational)
**d)** \( \sqrt{25} = 5 \) (rational)
**e)** \( \sqrt{10} \) is irrational and lies between **3** and **4**.
**f)** \( \sqrt{3} \) is irrational and lies between **1** and **2**.
**g)** \( \sqrt{36} = 6 \) (rational)
**h)** \( \sqrt{\frac{9}{4}} = \frac{3}{2} \) (rational)
**i)** \( \sqrt{\frac{18}{50}} = \frac{3}{5} \) (rational)
**j)** \( \sqrt{\frac{12 + 4}{4}} = 2 \) (rational)
**k)** \( \sqrt{\frac{32}{4}} = \sqrt{8} \) is irrational and lies between **2** and **3**.
Solución
Certainly! Let's go through each part of Exercise 2, Part 1, step by step.
### 1. Simplifying Roots:
**a) \( \sqrt{1} \)**
- **Simplification:** \( \sqrt{1} = 1 \)
- **Conclusion:** 1 is a rational number.
---
**b) \( \sqrt{5} \)**
- **Nature:** Irrational number.
- **Establishing Bounds:**
- \( 2^2 = 4 \) and \( 3^2 = 9 \)
- Therefore, \( 2 < \sqrt{5} < 3 \)
---
**c) \( \sqrt{0} \)**
- **Simplification:** \( \sqrt{0} = 0 \)
- **Conclusion:** 0 is a rational number.
---
**d) \( \sqrt{25} \)**
- **Simplification:** \( \sqrt{25} = 5 \)
- **Conclusion:** 5 is a rational number.
---
**e) \( \sqrt{10} \)**
- **Nature:** Irrational number.
- **Establishing Bounds:**
- \( 3^2 = 9 \) and \( 4^2 = 16 \)
- Therefore, \( 3 < \sqrt{10} < 4 \)
---
**f) \( \sqrt{3} \)**
- **Nature:** Irrational number.
- **Establishing Bounds:**
- \( 1^2 = 1 \) and \( 2^2 = 4 \)
- Therefore, \( 1 < \sqrt{3} < 2 \)
---
**g) \( \sqrt{36} \)**
- **Simplification:** \( \sqrt{36} = 6 \)
- **Conclusion:** 6 is a rational number.
---
**h) \( \sqrt{\frac{9}{4}} \)**
- **Simplification:**
\[
\sqrt{\frac{9}{4}} = \frac{\sqrt{9}}{\sqrt{4}} = \frac{3}{2}
\]
- **Conclusion:** \( \frac{3}{2} \) is a rational number.
---
**i) \( \sqrt{\frac{18}{50}} \)**
- **Simplification:**
\[
\frac{18}{50} = \frac{9}{25} \quad (\text{Simplified by dividing numerator and denominator by 2})
\]
\[
\sqrt{\frac{9}{25}} = \frac{\sqrt{9}}{\sqrt{25}} = \frac{3}{5}
\]
- **Conclusion:** \( \frac{3}{5} \) is a rational number.
---
**j) \( \sqrt{\frac{12 + 4}{4}} \)**
- **Simplification:**
\[
\frac{12 + 4}{4} = \frac{16}{4} = 4
\]
\[
\sqrt{4} = 2
\]
- **Conclusion:** 2 is a rational number.
---
**k) \( \sqrt{\frac{32}{4}} \)**
- **Simplification:**
\[
\frac{32}{4} = 8
\]
\[
\sqrt{8} = \sqrt{4 \times 2} = 2\sqrt{2}
\]
- **Nature:** Irrational number.
- **Establishing Bounds:**
- \( 2^2 = 4 \) and \( 3^2 = 9 \)
- Therefore, \( 2 < \sqrt{8} < 3 \)
---
### Summary of Answers:
**a)** \( \sqrt{1} = 1 \) (rational)
**b)** \( \sqrt{5} \) is irrational and lies between **2** and **3**.
**c)** \( \sqrt{0} = 0 \) (rational)
**d)** \( \sqrt{25} = 5 \) (rational)
**e)** \( \sqrt{10} \) is irrational and lies between **3** and **4**.
**f)** \( \sqrt{3} \) is irrational and lies between **1** and **2**.
**g)** \( \sqrt{36} = 6 \) (rational)
**h)** \( \sqrt{\frac{9}{4}} = \frac{3}{2} \) (rational)
**i)** \( \sqrt{\frac{18}{50}} = \frac{3}{5} \) (rational)
**j)** \( \sqrt{\frac{12 + 4}{4}} = 2 \) (rational)
**k)** \( \sqrt{\frac{32}{4}} = \sqrt{8} \) is irrational and lies between **2** and **3**.
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución