Pregunta
upstudy study bank question image url

13. A body of mass 42 kg increases its speed from \( 15 \mathrm{~m} / \mathrm{s} \) to \( 43 \mathrm{~m} / \mathrm{s} \) in 12 seconds. Find the force acting c the body. (A) 52 N (B) 98 N (C) 150 N (D) 203 N 14. Find the minimum value of \( =x^{2}+6 x-12 \). (A) -12 (B) -6 (C) -3 (D) -21 15. Given that \( y=2 x-1 \) and \( \Delta x=0.1 \), find \( \Delta y \). (A) 0.20 (B) 0.15 (C) 0.10 (D) 0.05 16. An exponential sequence (G.P.) is given by \( \frac{9}{2}, \frac{3}{4}, \frac{1}{8}, \ldots \ldots \). Find its sum to infinity. (A) \( 13 \frac{1}{2} \) (B) \( 4 \frac{1}{5} \) (C) \( € \) (D) \( 5 \frac{2}{5} \) 17. If \( r=i+2 j \) and \( =-I+3 j \), find \( |2 n-r| \). (A) 8.5 (B) 5.0 (C) 4.0 (D) 3.6 18. Find the area of a circle whose equation is \( { }^{2}+y^{2}-4 \cdot x+8 y+11=0 \). (A) \( 3 \pi \) (B) \( 9 \pi \) (C) \( \epsilon \) 19. Find the fourth term in the binomial expansion of \( (3 x-y)^{6} \). (A) \( -540 x^{3} y^{3} \) (B) \( -27 x^{3} \) (D) \( 12 \pi \) (C) \( 540 x^{4} y^{2} \) (D) \( -540 x^{4} y^{2} \) 20. Given that \( f(x)=x^{2}+3 x+1 \), find the value of \( x \) at the turning point. (A) 2 (B) \( 1 \frac{1}{2}(C \) (C) \( -1 \frac{1}{2} \) 21. In how many ways can 12 people be seated on a bench if only 5 spaces are available? (A) 950 2 (B) 11880 (C) 792 (D) 495 22. If \( K x^{2}-12 x+K=0 \) has equal roots, find the values of \( K \). \( (A)+2(B)+3 \) \( (C)+.6 \) (D) +9

Ask by Joseph Harrington. in Nigeria
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Simplified Answers:** 13. **Force on the body:** 98 N 14. **Minimum value of \( f(x) \):** -21 15. **\( \Delta y \):** 0.20 16. **Sum to infinity of the G.P.:** 5 1⁄5 17. **Magnitude \( |2\mathbf{s} - \mathbf{r}| \):** 5.0 18. **Area of the circle:** 9π 19. **Fourth term in the binomial expansion:** -540x³y³ 20. **Value of \( x \) at the turning point:** -1 1⁄2 21. **Number of ways to seat 12 people on a bench:** 95,040 22. **Values of \( K \):** 6 and -6 (None of the options are correct)

Solución

Sure, let's go through each of the questions you've provided and identify the correct answers along with brief explanations. --- ### **Question 13** **A body of mass 42 kg increases its speed from \( 15 \mathrm{~m/s} \) to \( 43 \mathrm{~m/s} \) in 12 seconds. Find the force acting on the body.** **Options:** - (A) 52 N - (B) 98 N - (C) 150 N - (D) 203 N **Solution:** - **Acceleration (a)** = \( \frac{\Delta v}{\Delta t} = \frac{43 - 15}{12} = \frac{28}{12} = \frac{7}{3} \approx 2.333 \, \mathrm{m/s^2} \) - **Force (F)** = mass (m) × acceleration (a) = \( 42 \times \frac{7}{3} = 42 \times 2.333 \approx 98 \, \mathrm{N} \) **Answer:** **(B) 98 N** --- ### **Question 14** **Find the minimum value of \( f(x) = x^{2} + 6x - 12 \).** **Options:** - (A) -12 - (B) -6 - (C) -3 - (D) -21 **Solution:** - The function is a quadratic equation of the form \( ax^2 + bx + c \). - The vertex (minimum point) occurs at \( x = -\frac{b}{2a} = -\frac{6}{2 \times 1} = -3 \). - Minimum value \( f(-3) = (-3)^2 + 6(-3) - 12 = 9 - 18 - 12 = -21 \). **Answer:** **(D) -21** --- ### **Question 15** **Given that \( y = 2x - 1 \) and \( \Delta x = 0.1 \), find \( \Delta y \).** **Options:** - (A) 0.20 - (B) 0.15 - (C) 0.10 - (D) 0.05 **Solution:** - \( \Delta y = 2 \times \Delta x = 2 \times 0.1 = 0.2 \) **Answer:** **(A) 0.20** --- ### **Question 16** **An exponential sequence (G.P.) is given by \( \frac{9}{2}, \frac{3}{4}, \frac{1}{8}, \ldots \). Find its sum to infinity.** **Options:** - (A) \( 13 \frac{1}{2} \) - (B) \( 4 \frac{1}{5} \) - (C) \( € \) - (D) \( 5 \frac{2}{5} \) **Solution:** - **First term (a)** = \( \frac{9}{2} \) - **Common ratio (r)** = \( \frac{3/4}{9/2} = \frac{3}{4} \times \frac{2}{9} = \frac{1}{6} \) - **Sum to infinity (S)** = \( \frac{a}{1 - r} = \frac{9/2}{1 - 1/6} = \frac{9/2}{5/6} = \frac{9 \times 6}{2 \times 5} = \frac{54}{10} = 5.4 = 5 \frac{2}{5} \) **Answer:** **(D) \( 5 \frac{2}{5} \)** --- ### **Question 17** **If \( \mathbf{r} = \mathbf{i} + 2\mathbf{j} \) and \( \mathbf{s} = -\mathbf{i} + 3\mathbf{j} \), find \( |2\mathbf{s} - \mathbf{r}| \).** **Options:** - (A) 8.5 - (B) 5.0 - (C) 4.0 - (D) 3.6 **Solution:** - Calculate \( 2\mathbf{s} - \mathbf{r} \): \[ 2(-\mathbf{i} + 3\mathbf{j}) - (\mathbf{i} + 2\mathbf{j}) = -2\mathbf{i} + 6\mathbf{j} - \mathbf{i} - 2\mathbf{j} = -3\mathbf{i} + 4\mathbf{j} \] - Magnitude: \[ \sqrt{(-3)^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5.0 \] **Answer:** **(B) 5.0** --- ### **Question 18** **Find the area of a circle whose equation is \( x^{2} + y^{2} - 4x + 8y + 11 = 0 \).** **Options:** - (A) \( 3\pi \) - (B) \( 9\pi \) - (C) \( \epsilon \) - (D) Not listed correctly **Solution:** - Rewrite the equation in standard form by completing the squares: \[ x^2 - 4x + y^2 + 8y = -11 \] \[ (x^2 - 4x + 4) + (y^2 + 8y + 16) = -11 + 4 + 16 \] \[ (x - 2)^2 + (y + 4)^2 = 9 \] - **Radius (r)** = √9 = 3 - **Area** = \( \pi r^2 = \pi \times 9 = 9\pi \) **Answer:** **(B) \( 9\pi \)** --- ### **Question 19** **Find the fourth term in the binomial expansion of \( (3x - y)^{6} \).** **Options:** - (A) \( -540x^{3}y^{3} \) - (B) \( -27x^{3} \) - (C) \( 540x^{4}y^{2} \) - (D) \( -540x^{4}y^{2} \) **Solution:** - The general term for the binomial expansion is: \[ T_{k+1} = C(6, k) \times (3x)^{6-k} \times (-y)^k \] - For the fourth term, \( k = 3 \): \[ T_4 = C(6, 3) \times (3x)^3 \times (-y)^3 = 20 \times 27x^3 \times (-y)^3 = 20 \times 27 \times (-1) x^3 y^3 = -540x^3y^3 \] **Answer:** **(A) \( -540x^{3}y^{3} \)** --- ### **Question 20** **Given that \( f(x) = x^{2} + 3x + 1 \), find the value of \( x \) at the turning point.** **Options:** - (A) 2 - (B) \( 1\frac{1}{2} \) - (C) \( -1\frac{1}{2} \) - (D) Not listed correctly **Solution:** - The x-coordinate of the turning point for a quadratic \( ax^2 + bx + c \) is \( -\frac{b}{2a} \): \[ x = -\frac{3}{2 \times 1} = -\frac{3}{2} = -1.5 \] **Answer:** **(C) \( -1\frac{1}{2} \)** --- ### **Question 21** **In how many ways can 12 people be seated on a bench if only 5 spaces are available?** **Options:** - (A) 95,040 - (B) 11,880 - (C) 792 - (D) 495 **Solution:** - This is a permutation problem where we select and arrange 5 people out of 12: \[ P(12,5) = 12 \times 11 \times 10 \times 9 \times 8 = 95,040 \] **Answer:** **(A) 95,040** --- ### **Question 22** **If \( Kx^{2} - 12x + K = 0 \) has equal roots, find the values of \( K \).** **Options:** - (A) +2 - (B) +3 - (C) +0.6 - (D) +9 **Solution:** - For the quadratic equation \( Kx^2 - 12x + K = 0 \) to have equal roots, the discriminant must be zero: \[ D = b^2 - 4ac = (-12)^2 - 4 \times K \times K = 144 - 4K^2 = 0 \] \[ 4K^2 = 144 \Rightarrow K^2 = 36 \Rightarrow K = \pm6 \] - The possible values of \( K \) are **6** and **-6**. - **Note:** None of the provided options match the correct values. **Answer:** **The values of \( K \) are \( 6 \) and \( -6 \). None of the provided options are correct.** --- If you have any further questions or need more detailed explanations for any of the problems, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the force acting on the body in question 13, we can apply Newton's second law, which states \( F = m \cdot a \). First, calculate the acceleration \( a \) by using the formula \( a = \frac{\Delta v}{\Delta t} = \frac{43 - 15}{12} = \frac{28}{12} \approx 2.33 \mathrm{~m/s}^2 \). Then, multiply by the mass of the body: \( F = 42 \cdot 2.33 \approx 98 N \). Hence, the answer is (B) 98 N. For question 14 regarding the quadratic function \( f(x) = x^{2} + 6x - 12 \), we can find the minimum value by using the vertex formula \( x = -\frac{b}{2a} \). Substituting the values gives \( x = -\frac{6}{2} = -3 \). Plugging \( -3 \) back into the function gives us \( f(-3) = (-3)^{2} + 6(-3) - 12 = 9 - 18 - 12 = -21 \). So, the minimum value is (D) -21.

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad