5. \( \sqrt{\left(\frac{4}{9}+\frac{1}{2} \cdot \frac{7}{6}\right)+\frac{11}{9}}: \frac{6}{5}=x: \sqrt{\left(\frac{2}{5}+\frac{4}{3} \cdot \frac{3}{10}\right) \cdot \frac{1}{5}} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
Let’s break down the given equation step by step! First, we simplify the expressions on both sides of the equation. On the left side, we have: \[ \frac{4}{9} + \frac{1}{2} \cdot \frac{7}{6} \] Calculating \( \frac{1}{2} \cdot \frac{7}{6} = \frac{7}{12} \). Now find a common denominator for \( \frac{4}{9} \) and \( \frac{7}{12} \), which is 36: \[ \frac{4}{9} = \frac{16}{36}, \quad \frac{7}{12} = \frac{21}{36} \] Adding them gives: \[ \frac{16}{36} + \frac{21}{36} = \frac{37}{36} \] Now add \( \frac{11}{9} \): Convert \( \frac{11}{9} \) to have a denominator of 36: \[ \frac{11}{9} = \frac{44}{36} \] So now we have \( \frac{37}{36} + \frac{44}{36} = \frac{81}{36} \). Now we can take the square root: \[ \sqrt{\frac{81}{36}} = \frac{9}{6} = \frac{3}{2} \] Now, we have: \[ \frac{3}{2} : \frac{6}{5} = x : \sqrt{\left(\frac{2}{5} + \frac{4}{3} \cdot \frac{3}{10}\right) \cdot \frac{1}{5}} \] Compute the right side: Calculating \( \frac{4}{3} \cdot \frac{3}{10} = \frac{4}{10} = \frac{2}{5} \): \[ \frac{2}{5} + \frac{2}{5} = \frac{4}{5} \] Now multiply by \( \frac{1}{5} \): \[ \left(\frac{4}{5}\right) \cdot \left(\frac{1}{5}\right) = \frac{4}{25} \] So we take the square root: \[ \sqrt{\frac{4}{25}} = \frac{2}{5} \] Now we have: \[ \frac{3}{2} : \frac{6}{5} = x : \frac{2}{5} \] Converting into fractions gives: \[ \frac{\frac{3}{2}}{\frac{6}{5}} = \frac{3}{2} \cdot \frac{5}{6} = \frac{15}{12} = \frac{5}{4} \] So now equate and solve for \( x \): \[ \frac{5}{4} = \frac{x}{\frac{2}{5}} \implies x = \frac{5}{4} \cdot \frac{2}{5} = \frac{2}{4} = \frac{1}{2} \] Thus, the final answer is: \[ \boxed{\frac{1}{2}} \]