Pregunta
upstudy study bank question image url

5. \( \sqrt{\left(\frac{4}{9}+\frac{1}{2} \cdot \frac{7}{6}\right)+\frac{11}{9}}: \frac{6}{5}=x: \sqrt{\left(\frac{2}{5}+\frac{4}{3} \cdot \frac{3}{10}\right) \cdot \frac{1}{5}} \)

Ask by Davison Hodges. in Italy
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\[ x = \frac{1}{2} \]

Solución

Per risolvere l'equazione \[ \sqrt{\left(\frac{4}{9} + \frac{1}{2} \cdot \frac{7}{6}\right) + \frac{11}{9}} \div \frac{6}{5} = x \div \sqrt{\left(\frac{2}{5} + \frac{4}{3} \cdot \frac{3}{10}\right) \cdot \frac{1}{5}}, \] seguiamo i seguenti passi: ### 1. Calcolare l'espressione a sinistra dell'equazione \[ A = \sqrt{\left(\frac{4}{9} + \frac{1}{2} \cdot \frac{7}{6}\right) + \frac{11}{9}} \] - Calcoliamo \(\frac{1}{2} \cdot \frac{7}{6} = \frac{7}{12}\). - Sommiamo \(\frac{4}{9} + \frac{7}{12}\). Per sommare frazioni con denominatori diversi, troviamo il minimo comune denominatore, che è 36: \[ \frac{4}{9} = \frac{16}{36}, \quad \frac{7}{12} = \frac{21}{36} \quad \Rightarrow \quad \frac{16}{36} + \frac{21}{36} = \frac{37}{36} \] - Aggiungiamo \(\frac{11}{9} = \frac{44}{36}\): \[ \frac{37}{36} + \frac{44}{36} = \frac{81}{36} = \frac{9}{4} \] - Ora, calcoliamo la radice quadrata: \[ A = \sqrt{\frac{9}{4}} = \frac{3}{2} \] ### 2. Dividere \(A\) per \(\frac{6}{5}\) \[ \frac{A}{\frac{6}{5}} = \frac{\frac{3}{2}}{\frac{6}{5}} = \frac{3}{2} \times \frac{5}{6} = \frac{15}{12} = \frac{5}{4} \] ### 3. Calcolare l'espressione a destra dell'equazione \[ C = \sqrt{\left(\frac{2}{5} + \frac{4}{3} \cdot \frac{3}{10}\right) \cdot \frac{1}{5}} \] - Calcoliamo \(\frac{4}{3} \cdot \frac{3}{10} = \frac{12}{30} = \frac{2}{5}\). - Sommiamo \(\frac{2}{5} + \frac{2}{5} = \frac{4}{5}\). - Moltiplichiamo per \(\frac{1}{5}\): \[ \frac{4}{5} \times \frac{1}{5} = \frac{4}{25} \] - Ora, calcoliamo la radice quadrata: \[ C = \sqrt{\frac{4}{25}} = \frac{2}{5} \] ### 4. Impostare l'equazione per \(x\) Dall'equazione iniziale: \[ \frac{5}{4} = \frac{x}{\frac{2}{5}} \] Risolvendo per \(x\): \[ x = \frac{5}{4} \times \frac{2}{5} = \frac{10}{20} = \frac{1}{2} \] ### **Risposta Finale** \[ x = \frac{1}{2} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Let’s break down the given equation step by step! First, we simplify the expressions on both sides of the equation. On the left side, we have: \[ \frac{4}{9} + \frac{1}{2} \cdot \frac{7}{6} \] Calculating \( \frac{1}{2} \cdot \frac{7}{6} = \frac{7}{12} \). Now find a common denominator for \( \frac{4}{9} \) and \( \frac{7}{12} \), which is 36: \[ \frac{4}{9} = \frac{16}{36}, \quad \frac{7}{12} = \frac{21}{36} \] Adding them gives: \[ \frac{16}{36} + \frac{21}{36} = \frac{37}{36} \] Now add \( \frac{11}{9} \): Convert \( \frac{11}{9} \) to have a denominator of 36: \[ \frac{11}{9} = \frac{44}{36} \] So now we have \( \frac{37}{36} + \frac{44}{36} = \frac{81}{36} \). Now we can take the square root: \[ \sqrt{\frac{81}{36}} = \frac{9}{6} = \frac{3}{2} \] Now, we have: \[ \frac{3}{2} : \frac{6}{5} = x : \sqrt{\left(\frac{2}{5} + \frac{4}{3} \cdot \frac{3}{10}\right) \cdot \frac{1}{5}} \] Compute the right side: Calculating \( \frac{4}{3} \cdot \frac{3}{10} = \frac{4}{10} = \frac{2}{5} \): \[ \frac{2}{5} + \frac{2}{5} = \frac{4}{5} \] Now multiply by \( \frac{1}{5} \): \[ \left(\frac{4}{5}\right) \cdot \left(\frac{1}{5}\right) = \frac{4}{25} \] So we take the square root: \[ \sqrt{\frac{4}{25}} = \frac{2}{5} \] Now we have: \[ \frac{3}{2} : \frac{6}{5} = x : \frac{2}{5} \] Converting into fractions gives: \[ \frac{\frac{3}{2}}{\frac{6}{5}} = \frac{3}{2} \cdot \frac{5}{6} = \frac{15}{12} = \frac{5}{4} \] So now equate and solve for \( x \): \[ \frac{5}{4} = \frac{x}{\frac{2}{5}} \implies x = \frac{5}{4} \cdot \frac{2}{5} = \frac{2}{4} = \frac{1}{2} \] Thus, the final answer is: \[ \boxed{\frac{1}{2}} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad