Pregunta
upstudy study bank question image url

Elimination was used to solve a system of equations. One of the intermediate steps led to the equation \( 3 x=18 \). Which of the following systems could have led to this equatio \[ 4 x+y=20 \] \( x-y=2 \) \( 2 x+y=24 \) \( -x-y=6 \) \[ x+y=4 \] \[ x-2 y=10 \] \[ 3 x+y=18 \] \( -3 x-y=-18 \)

Ask by Robbins Ingram. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The systems that could have led to \( 3x = 18 \) are: - \( x + y = 4 \) and \( x - 2y = 10 \) - \( 3x + y = 18 \) and \( -3x - y = -18 \)

Solución

To determine which system of equations could have led to the intermediate step \( 3x = 18 \), we can solve each system of equations and check if we can derive \( 3x = 18 \) from any of them. ### Step 1: Solve each system of equations 1. **System 1:** \[ \begin{align*} 4x + y &= 20 \quad (1) \\ x - y &= 2 \quad (2) \end{align*} \] From equation (2), we can express \( y \) in terms of \( x \): \[ y = x - 2 \] Substitute \( y \) into equation (1): \[ 4x + (x - 2) = 20 \\ 5x - 2 = 20 \\ 5x = 22 \\ x = \frac{22}{5} \] This does not lead to \( 3x = 18 \). 2. **System 2:** \[ \begin{align*} 2x + y &= 24 \quad (1) \\ -x - y &= 6 \quad (2) \end{align*} \] From equation (2), we can express \( y \): \[ y = -x - 6 \] Substitute \( y \) into equation (1): \[ 2x + (-x - 6) = 24 \\ 2x - x - 6 = 24 \\ x - 6 = 24 \\ x = 30 \] This does not lead to \( 3x = 18 \). 3. **System 3:** \[ \begin{align*} x + y &= 4 \quad (1) \\ x - 2y &= 10 \quad (2) \end{align*} \] From equation (1), we can express \( y \): \[ y = 4 - x \] Substitute \( y \) into equation (2): \[ x - 2(4 - x) = 10 \\ x - 8 + 2x = 10 \\ 3x - 8 = 10 \\ 3x = 18 \] This leads to \( 3x = 18 \). 4. **System 4:** \[ \begin{align*} 3x + y &= 18 \quad (1) \\ -3x - y &= -18 \quad (2) \end{align*} \] From equation (1), we already have \( 3x + y = 18 \), which is the same as the intermediate step. Thus, this system also leads to \( 3x = 18 \). ### Conclusion The systems that could have led to the equation \( 3x = 18 \) are: - System 3: \[ x + y = 4 \\ x - 2y = 10 \] - System 4: \[ 3x + y = 18 \\ -3x - y = -18 \] Thus, the answer is **System 3 and System 4**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To reach the equation \( 3x = 18 \) through elimination, one possible pathway involves manipulating the original system of equations such that one variable gets eliminated. From the options given, the third system, which includes \( 3x + y = 18 \), could potentially lead to this equation if you isolate or manipulate \( y \) accordingly. For instance, if you started with \( 3x + y = 18 \) and reorganized it, it might simplify down to \( 3x = 18 \). In terms of real-world application, systems of equations like these are frequently used in scenarios such as budgeting or resource allocation. For example, if you're trying to determine how to allocate funds between different departments while maintaining a certain balance, these equations can help establish the relationships and limits necessary for decision-making. By solving them, you can effectively manage your resources in a way that meets multiple goals simultaneously!

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad