Pregunta
upstudy study bank question image url

(4) \( x^{2}+8 x+15 \)

Ask by Matthews Weaver. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( x^{2} + 8x + 15 = (x + 3)(x + 5) \)

Solución

To factor the quadratic expression \( x^{2} + 8x + 15 \), follow these steps: 1. **Identify the coefficients:** - \( a = 1 \) (coefficient of \( x^2 \)) - \( b = 8 \) (coefficient of \( x \)) - \( c = 15 \) (constant term) 2. **Find two numbers that multiply to \( ac = 1 \times 15 = 15 \) and add up to \( b = 8 \).** - The numbers **3** and **5** satisfy these conditions because: - \( 3 \times 5 = 15 \) - \( 3 + 5 = 8 \) 3. **Rewrite the middle term using these numbers:** \[ x^{2} + 3x + 5x + 15 \] 4. **Factor by grouping:** \[ (x^{2} + 3x) + (5x + 15) = x(x + 3) + 5(x + 3) \] 5. **Factor out the common binomial factor \( (x + 3) \):** \[ (x + 3)(x + 5) \] **Final Factored Form:** \[ x^{2} + 8x + 15 = (x + 3)(x + 5) \] **Verification:** To ensure the factorization is correct, you can expand the factors: \[ (x + 3)(x + 5) = x^2 + 5x + 3x + 15 = x^2 + 8x + 15 \] which matches the original expression.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To truly appreciate the quadratic expression \( x^{2}+8x+15 \), you may want to consider its historical context. Quadratics have played a significant role in mathematics since ancient civilizations. Babylonians used geometric methods that resembled solving quadratic equations over 4,000 years ago! The development of algebra further formalized these methods, with the Persian mathematician Al-Khwarizmi laying the groundwork for quadratic solutions, making the journey to our modern understanding both exciting and rich. Now, let’s dive into how to solve such quadratics in real-world scenarios! This expression represents a parabolic graph, which can model various physical systems, from projectile motion to profit maximization in business. By finding the roots, or where the parabola crosses the x-axis, we can identify critical points—like when an object hits the ground or when profits break even. So, not only do these equations help us mathematically, but they also bring valuable insights into real-world situations!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad