Pregunta
upstudy study bank question image url

\begin{tabular}{l} Consider the following set of real numbers: \\ \( \left\{\pi,-\sqrt{3},-0.5,0, \frac{1}{7}, \sqrt{5}, \sqrt{9}, 3 . \overline{3}\right\} \) \\ Which of the following contains ALL of the irrational numbers in the set? \\ \( \begin{array}{l}\pi,-\sqrt{3}, \sqrt{5}, \sqrt{9} \\ \\ \pi,-\sqrt{3}, \sqrt{5} \\ \\ -\sqrt{3}, \sqrt{5}, \sqrt{9}, 3 . \overline{3}\end{array} \) \\ \( \begin{array}{l}\pi\end{array} \) \\ \( \begin{array}{l}\pi\end{array} \) \\ \hline\end{tabular}

Ask by Savage Weber. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The correct option containing all the irrational numbers is \(\pi, -\sqrt{3}, \sqrt{5}\).

Solución

To determine which option contains **all the irrational numbers** from the given set: \[ \left\{\pi, -\sqrt{3}, -0.5, 0, \frac{1}{7}, \sqrt{5}, \sqrt{9}, 3.\overline{3}\right\} \] **Identify the Irrational Numbers:** 1. **\(\pi\)**: Irrational. 2. **\(-\sqrt{3}\)**: Irrational. 3. **\(-0.5\)**: Rational. 4. **\(0\)**: Rational. 5. **\(\frac{1}{7}\)**: Rational. 6. **\(\sqrt{5}\)**: Irrational. 7. **\(\sqrt{9} = 3\)**: Rational. 8. **\(3.\overline{3} = \frac{10}{3}\)**: Rational. From this, the irrational numbers in the set are: \[ \pi, -\sqrt{3}, \sqrt{5} \] **Reviewing the Options:** 1. **{\(\pi, -\sqrt{3}, \sqrt{5}, \sqrt{9}\)}**: Includes \(\sqrt{9}\) (rational) — **Incorrect**. 2. **{\(\pi, -\sqrt{3}, \sqrt{5}\)}**: **All irrational numbers** — **Correct**. 3. **{\(-\sqrt{3}, \sqrt{5}, \sqrt{9}, 3.\overline{3}\)}**: Includes \(\sqrt{9}\) and \(3.\overline{3}\) (both rational) — **Incorrect**. 4. **{\(\pi\)}**: Missing \(-\sqrt{3}\) and \(\sqrt{5}\) — **Incorrect**. **Conclusion:** The correct option that contains **all the irrational numbers** from the set is: \[ \boxed{\left\{\pi,\, -\sqrt{3},\, \sqrt{5}\right\}} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Among the given numbers, irrational numbers are those that cannot be expressed as a fraction of two integers. In our set, \(\pi\), \(-\sqrt{3}\), and \(\sqrt{5}\) are irrational, while \(\sqrt{9}\) equals 3, which is rational, and the rest of the numbers (like \(-0.5\), \(0\), \(\frac{1}{7}\), and \(3.\overline{3}\)) are also rational. So, the selection containing all the irrational numbers is \(\pi, -\sqrt{3}, \sqrt{5}\). Interestingly, numbers like \(\pi\) and \(-\sqrt{3}\) have not only captured mathematicians' attention for centuries but also artists and writers, inspiring countless works that explore the relationship between the infinite and the aesthetic. If you're venturing into the world of irrational numbers, it's vital to recognize that they possess unique properties, like being non-repeating and non-terminating when expressed in decimal form. A common mistake is assuming that all radicals produce irrational numbers, which isn't true; \(\sqrt{9}\) reminds us that the square root of perfect squares yields rational results!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad