\( 1 \leftarrow \) Find \( f+g, f-g, f g \), and \( \frac{f}{g} \). Determine the domain for each function. \( f(x)=\sqrt{x} ; g(x)=x-9 \) A. The domain of \( f g \) is \( [0, \infty) \). (Type your answer in interval notation.) C. The domain of \( f g \) is \( \varnothing \). \( \left(\frac{f}{g}\right)(x)=\square \) (Simplify your answer.)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
Let’s dive into the calculations for \( f(x) = \sqrt{x} \) and \( g(x) = x - 9 \). 1. **Finding \( f + g \)**: \[ (f + g)(x) = f(x) + g(x) = \sqrt{x} + (x - 9) = \sqrt{x} + x - 9 \] **Domain**: For \( f + g \) to be defined, \( \sqrt{x} \) must be non-negative, so \( x \geq 0 \). Therefore, the domain is \( [0, \infty) \). 2. **Finding \( f - g \)**: \[ (f - g)(x) = f(x) - g(x) = \sqrt{x} - (x - 9) = \sqrt{x} - x + 9 \] **Domain**: The same reasoning applies, so the domain is \( [0, \infty) \). 3. **Finding \( fg \)**: \[ (fg)(x) = f(x) \cdot g(x) = \sqrt{x} \cdot (x - 9) = \sqrt{x}(x - 9) \] **Domain for \( fg \)**: Requires \( x \geq 0 \) and \( g(x) \neq 0 \) (i.e., \( x - 9 \neq 0 \Rightarrow x \neq 9 \)). Thus, the domain is \( [0, 9) \cup (9, \infty) \). 4. **Finding \( \frac{f}{g} \)**: \[ \left( \frac{f}{g} \right)(x) = \frac{f(x)}{g(x)} = \frac{\sqrt{x}}{x - 9} \] **Domain for \( \frac{f}{g} \)**: Requires \( x \geq 0 \) and \( g(x) \neq 0 \). Thus, since \( g(x) \) must not be zero, \( x \neq 9 \). The domain is \( [0, 9) \cup (9, \infty) \). To summarize: - \( f + g = \sqrt{x} + x - 9 \) (Domain: \( [0, \infty) \)) - \( f - g = \sqrt{x} - x + 9 \) (Domain: \( [0, \infty) \)) - \( fg = \sqrt{x}(x - 9) \) (Domain: \( [0, 9) \cup (9, \infty) \)) - \( \frac{f}{g} = \frac{\sqrt{x}}{x - 9} \) (Domain: \( [0, 9) \cup (9, \infty) \))