Pregunta
upstudy study bank question image url

The half-life of a particular radioactive substance is 1 year. If you started with 40 grams of this substance, how much of it would remain after 3 years? Remaining Amount = \( I(1-r)^{t} \) [?] grams Round your answer to the nearest whole number.

Ask by Coles Zimmerman. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After 3 years, 5 grams of the substance remain.

Solución

To determine the remaining amount of the radioactive substance after 3 years, we'll use the given formula: \[ \text{Remaining Amount} = I(1 - r)^t \] **Where:** - \( I = 40 \) grams (initial amount) - \( r \) is the decay rate - \( t = 3 \) years (time elapsed) ### Step 1: Determine the Decay Rate (\( r \)) Since the half-life is 1 year, after each year, half of the substance remains. This means: \[ (1 - r) = \frac{1}{2} \] Solving for \( r \): \[ r = 1 - \frac{1}{2} = \frac{1}{2} \] ### Step 2: Calculate the Remaining Amount Plugging the values into the formula: \[ \text{Remaining Amount} = 40 \left(\frac{1}{2}\right)^3 = 40 \times \frac{1}{8} = 5 \text{ grams} \] ### Final Answer **5 grams** of the substance will remain after 3 years.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

After 3 years, the substance will have undergone three half-lives since the half-life is 1 year. Each half-life will halve the amount of the substance: 1st year: 40 grams → 20 grams 2nd year: 20 grams → 10 grams 3rd year: 10 grams → 5 grams So, after 3 years, you will have approximately 5 grams of the radioactive substance remaining. Looking at real-life examples, understanding half-lives helps us grasp many scientific fields such as archaeology, where carbon dating uses the concept to determine the age of ancient artifacts, or medical applications in assessing the decay of radioactive tracers used in imaging techniques. It's fascinating how this fundamental concept has practical implications! On another note, when tackling half-life problems, a common mistake is forgetting to count the number of half-lives correctly or miscalculating the remaining amount at each stage. A great tip is to remember that the amount decreases exponentially; using a diagram can help visualize the decay process!

Latest Chemistry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad