\begin{tabular}{l} A. Aply the laws of exponents to simplify the given exponential expressions. Show your comp \\ Highlight the final answer. \( \left(4 x y^{2}\right) \cdot\left(7 x^{3} y^{4}\right) \) \\ b. \( \left(-3 a^{4} b^{5}\right)^{4} \) \\ c. \( \left(-\frac{1}{2}\right)^{2} \cdot\left(-\frac{1}{2}\right)^{4} \) \\ d. \( \frac{48 m^{12} n^{9}}{4 m^{9} n} \) \\ \hline\end{tabular}
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To simplify these expressions, we can apply the laws of exponents systematically. 1. **For \( \left(4 x y^{2}\right) \cdot\left(7 x^{3} y^{4}\right) \)**: Combine the coefficients (4 and 7), and then add the exponents of like bases: \[ 4 \cdot 7 \cdot x^{1+3} \cdot y^{2+4} = 28 x^{4} y^{6} \] **Final Answer: \( 28 x^{4} y^{6} \)** 2. **For \( \left(-3 a^{4} b^{5}\right)^{4} \)**: Raise the coefficient and apply the power of a power rule to the variables: \[ (-3)^{4} a^{4 \cdot 4} b^{5 \cdot 4} = 81 a^{16} b^{20} \] **Final Answer: \( 81 a^{16} b^{20} \)** 3. **For \( \left(-\frac{1}{2}\right)^{2} \cdot\left(-\frac{1}{2}\right)^{4} \)**: Add the exponents since the bases are the same: \[ \left(-\frac{1}{2}\right)^{2+4} = \left(-\frac{1}{2}\right)^{6} = -\frac{1}{64} \] **Final Answer: \( -\frac{1}{64} \)** 4. **For \( \frac{48 m^{12} n^{9}}{4 m^{9} n} \)**: Divide the coefficients and subtract the exponents of like bases: \[ \frac{48}{4} \cdot m^{12-9} \cdot n^{9-1} = 12 m^{3} n^{8} \] **Final Answer: \( 12 m^{3} n^{8} \)**