Pregunta
upstudy study bank question image url

Nina lit a candle and measured its height after different lengths of time. After 0.5 hour, the height of the candle was 16.5 centimeters. After 1.5 hours, the height of the candle was 13.5 centimeters. Assume the relationship is linear. Find and interpret the rate of change. The rate of change is hour. Find and interpret the initial value. The initial value is

Ask by Fowler Hill. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The rate of change is –3 cm per hour, meaning the candle burns down 3 centimeters each hour. The initial value is 18 cm, which is the candle's height when it was first lit.

Solución

To analyze the relationship between the height of the candle and the time elapsed, we'll assume a linear relationship of the form: \[ h(t) = mt + b \] where: - \( h(t) \) is the height of the candle at time \( t \) (in centimeters), - \( m \) is the rate of change (slope), - \( b \) is the initial height of the candle (y-intercept). ### Given Data Points: 1. At \( t = 0.5 \) hours, \( h = 16.5 \) cm. 2. At \( t = 1.5 \) hours, \( h = 13.5 \) cm. ### 1. Finding the Rate of Change (\( m \)): The rate of change (slope) is calculated using the two points: \[ m = \frac{h_2 - h_1}{t_2 - t_1} = \frac{13.5\, \text{cm} - 16.5\, \text{cm}}{1.5\, \text{hr} - 0.5\, \text{hr}} = \frac{-3\, \text{cm}}{1\, \text{hr}} = -3\, \text{cm/hour} \] **Interpretation:** **The rate of change is –3 cm per hour.** *This means the candle is burning at a rate of 3 centimeters each hour.* ### 2. Finding the Initial Value (\( b \)): Use one of the data points to solve for \( b \). Let's use \( t = 0.5 \) hours and \( h = 16.5 \) cm: \[ 16.5 = (-3)(0.5) + b \\ 16.5 = -1.5 + b \\ b = 16.5 + 1.5 \\ b = 18\, \text{cm} \] **Interpretation:** **The initial value is 18 cm.** *This represents the height of the candle at the moment Nina lit it (time zero).* ### Summary: - **Rate of Change:** –3 cm per hour *The candle decreases in height by 3 centimeters every hour.* - **Initial Value:** 18 cm *The candle was 18 centimeters tall when it was first lit.*

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the rate of change, we can use the formula for the slope \( m \) of a line, which is given by: \[ m = \frac{{y_2 - y_1}}{{x_2 - x_1}} = \frac{{13.5 - 16.5}}{{1.5 - 0.5}} = \frac{{-3}}{{1}} = -3 \] This means that the candle height decreases by 3 centimeters for every hour, indicating that as time passes, the candle burns down steadily. Now, to find the initial value, which represents the height of the candle at the start (when \( x = 0 \)), we can use the slope-intercept form. The height after 0.5 hours is 16.5 cm, so we can work out the initial value by extending back. Using the slope \( m = -3 \): At \( x = 0.5 \), \( y = 16.5 \): \[ y - 16.5 = -3(x - 0.5) \] Setting \( x = 0 \): \[ y - 16.5 = -3(0 - 0.5) \Rightarrow y - 16.5 = 1.5 \Rightarrow y = 18 \] Thus, the initial height of the candle is 18 centimeters, indicating how tall it was before being lit.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad