Pregunta
upstudy study bank question image url

3. The following system of equations will be solved by graphing. James thinks there is no solution while Rebekah thinks there are inf initely many solutions. Who do you agree with, and why? \[ \begin{array}{l}y=-\frac{3}{4} x+2 \\ 6 x+8 y=16\end{array} \]

Ask by Cummings Hampton. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Rebekah is correct. Both equations represent the same line, so there are infinitely many solutions.

Solución

To determine whether the system of equations has no solution, infinitely many solutions, or exactly one solution, let's analyze both equations: \[ \begin{cases} y = -\frac{3}{4}x + 2 \quad \text{(Equation 1)} \\ 6x + 8y = 16 \quad \text{(Equation 2)} \end{cases} \] ### Step 1: Rewrite Equation 2 in Slope-Intercept Form First, let's rewrite Equation 2 in the slope-intercept form \( y = mx + b \), where \( m \) is the slope and \( b \) is the y-intercept. \[ 6x + 8y = 16 \] Subtract \( 6x \) from both sides: \[ 8y = -6x + 16 \] Divide every term by 8 to solve for \( y \): \[ y = -\frac{6}{8}x + \frac{16}{8} \\ y = -\frac{3}{4}x + 2 \] ### Step 2: Compare Both Equations Now, both equations are in the form: \[ y = -\frac{3}{4}x + 2 \] This means **both equations represent the exact same line**. ### Conclusion - **Rebekah is correct**: Since both equations describe the same line, every point on the line is a solution to the system. Therefore, there are **infinitely many solutions**. - **James is incorrect**: There is not "no solution" because the lines do intersect; in fact, they coincide entirely. ### Visualization If you were to graph both equations on a coordinate plane, you'd see that they lie perfectly on top of each other, confirming that there are infinitely many points (solutions) where they intersect. **Final Answer:** Rebekah is correct. Both equations represent the same line, so there are infinitely many solutions.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

First, let's put the second equation into slope-intercept form (y = mx + b). Simplifying \(6x + 8y = 16\) gives us \(8y = -6x + 16\) or \(y = -\frac{3}{4}x + 2\). Notice how both equations represent the same line! This tallies with Rebekah's point; there are indeed infinitely many solutions since both lines are identical. Now onto the graphical aspect! When graphing, if both equations produce the same line, every point on that line is a solution. So while James thought there might be no solutions, in reality, he was staring at one solution set in varying coordinates! Embrace the magic of overlapping lines and realize that the solutions are limitless, like stars in the sky!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad