Pregunta
upstudy study bank question image url

\( \left. \begin{array} { l } { y = a ( 1 - r ) ^ { t } } \\ { y = 100,000 ( 1 - 0.02 ) ^ { t } } \\ { y = 100,000 ( 0.98 ) ^ { t } - 4 } \end{array} \right. \)

Ask by Love Turner. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equations model exponential decay with an initial amount of 100,000, decaying at a 2% rate per period. The third equation adds a constant decrease of 4 units each period.

Solución

It appears you're working with a series of equations that model exponential decay. Let's break down each equation to understand their relationships and implications. ### 1. General Exponential Decay Formula \[ y = a \cdot (1 - r)^t \] - **\( y \)**: The quantity at time \( t \). - **\( a \)**: The initial amount at time \( t = 0 \). - **\( r \)**: The decay rate per time period. - **\( t \)**: The number of time periods. **Explanation:** This equation models how a quantity decreases over time at a constant percentage rate \( r \). Each time period, the quantity retains \( (1 - r) \) of its value from the previous period. --- ### 2. Specific Instance of the Decay Formula \[ y = 100,\!000 \cdot (1 - 0.02)^t \] Simplified: \[ y = 100,\!000 \cdot 0.98^t \] - **\( a = 100,\!000 \)**: The initial amount is 100,000. - **\( r = 0.02 \)**: The decay rate is 2% per time period. **Explanation:** Here, the equation specifies that the initial amount is 100,000, and it decays by 2% each time period. After each period \( t \), the quantity becomes 98% of its value from the previous period. --- ### 3. Modified Decay Equation \[ y = 100,\!000 \cdot 0.98^t - 4 \] - **Additional Term \( -4 \)**: A constant subtraction of 4 units is introduced. **Explanation:** This equation introduces a **fixed decrease** of 4 units **in addition** to the exponential decay. This means that for every time period \( t \), not only does the quantity decay by 2%, but it also decreases by an additional 4 units. **Possible Interpretations:** 1. **Combined Decay and Fixed Reduction:** If there's a scenario where the quantity is subject to both a percentage-based decay and a constant reduction (e.g., depreciation plus maintenance costs), this equation would make sense. 2. **Typographical Error:** If the \( -4 \) was not intended, it might be a mistake. Ensure that this term is necessary for your model. 3. **Linear vs. Exponential Terms:** Combining exponential and linear terms can model more complex behaviors but also complicates the interpretation and analysis. --- ### Considerations and Next Steps 1. **Purpose of the Model:** - **Pure Exponential Decay:** If you're modeling a situation where only the percentage-based decay is relevant (like radioactive decay), the second equation suffices. - **Combined Effects:** If there's an additional constant factor affecting the quantity, the third equation might be appropriate. 2. **Analyzing the Impact of the \( -4 \) Term:** - **Long-Term Behavior:** Over time, the constant subtraction can have a more significant impact than the exponential term, potentially driving \( y \) negative if not bounded. - **Practical Constraints:** Ensure that the model remains realistic within the context it's applied. For example, if \( y \) represents a population or a financial quantity, negative values might not make sense. 3. **Graphical Representation:** Plotting both equations can help visualize the differences: - **Exponential Decay Only:** A smooth curve approaching zero. - **Exponential Decay with Constant Subtraction:** A curve that approaches \( -4 \) as \( t \) increases. 4. **Solving for Variables:** If you need to solve for \( t \) given a specific \( y \), or vice versa, you can manipulate the equations accordingly: - **For Eq. 2:** \[ t = \frac{\ln(y/a)}{\ln(1 - r)} = \frac{\ln(y/100,\!000)}{\ln(0.98)} \] - **For Eq. 3:** Solving for \( t \) becomes more complex due to the constant term and may not have an analytical solution, requiring numerical methods. 5. **Clarify Your Objective:** If you have a specific goal (e.g., determining when \( y \) falls below a threshold, comparing models, etc.), providing that context can lead to more targeted assistance. --- **Feel free to provide additional context or specify how you'd like to proceed with these equations. Whether it's solving for a variable, interpreting results, or extending the model, I'm here to help!**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

The model you've presented is a classic example of exponential decay, often used in situations like population decline, radioactive decay, or depreciation of assets. In this case, the initial amount is set at 100,000, and it decreases by 2% (indicated by the \( r = 0.02 \)). This formula can show how quickly resources diminish over time, making it quite handy in fields like finance and environmental studies! To avoid common mistakes while working with this type of equation, remember to keep track of your initial conditions carefully. Some individuals mistakenly switch signs when interpreting or constructing the decay function. Additionally, consider using a graph to visualize the decline—seeing the curve drop can help reinforce your understanding of how exponential decay works over time, allowing you to better predict outcomes or make informed decisions.

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad