Pregunta
upstudy study bank question image url

Solve the inequality and graph the solution on the number line. \( 3 x+6<2 x+8 \) or \( 2 x+4 \leq 4 x-6 \)

Ask by Logan Norris. in the United States
Jan 20,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution to the inequality \( 3x + 6 < 2x + 8 \) or \( 2x + 4 \leq 4x - 6 \) is \( x < 2 \) or \( x \geq 5 \). On the number line, this is represented by an open circle at 2 and shading to the left, and a closed circle at 5 with shading to the right.

Solución

To solve the inequality and graph the solution on the number line, we'll tackle each part of the compound inequality separately and then combine the results. ### Given Inequality: \[ 3x + 6 < 2x + 8 \quad \text{or} \quad 2x + 4 \leq 4x - 6 \] ### Solving Each Inequality: 1. **First Inequality:** \[ 3x + 6 < 2x + 8 \] - **Subtract \(2x\) from both sides:** \[ 3x - 2x + 6 < 8 \] \[ x + 6 < 8 \] - **Subtract 6 from both sides:** \[ x < 2 \] **Solution:** \( x < 2 \) 2. **Second Inequality:** \[ 2x + 4 \leq 4x - 6 \] - **Subtract \(2x\) from both sides:** \[ 4 \leq 2x - 6 \] - **Add 6 to both sides:** \[ 10 \leq 2x \] - **Divide both sides by 2:** \[ 5 \leq x \] \[ x \geq 5 \] **Solution:** \( x \geq 5 \) ### Combining the Solutions: The original compound inequality uses "or," meaning the solution is the union of both individual solutions. \[ x < 2 \quad \text{or} \quad x \geq 5 \] ### Graphing on the Number Line: 1. **For \( x < 2 \):** - Draw an **open circle** at \( x = 2 \) (since 2 is not included). - Shade the line to the **left** of 2. 2. **For \( x \geq 5 \):** - Draw a **closed circle** at \( x = 5 \) (since 5 is included). - Shade the line to the **right** of 5. ### Number Line Representation: ``` <---|-----------|===========> 2 5 ``` - **Open circle** at 2 (indicated by the parenthesis in the interval). - **Closed circle** at 5 (indicated by the square bracket in the interval). - Shading extends to the left of 2 and to the right of 5. ### Final Solution: \[ x < 2 \quad \text{or} \quad x \geq 5 \] ### Interval Notation: \[ (-\infty, 2) \cup [5, \infty) \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the first part of the inequality \( 3x + 6 < 2x + 8 \), subtract \(2x\) from both sides to get \(x + 6 < 8\). Then, subtract \(6\) from both sides, yielding \(x < 2\). For the second inequality \( 2x + 4 \leq 4x - 6 \), start by subtracting \(2x\) from both sides to obtain \(4 \leq 2x - 6\). Adding \(6\) to both sides gives \(10 \leq 2x\), or dividing by \(2\) results in \(5 \leq x\) or \(x \geq 5\). Combining both parts, the solution set is \( x < 2\) or \( x \geq 5\). On the number line, you would show an open circle at \(2\) with a line extending leftward, and a closed circle at \(5\) with a line extending rightward. Now you can easily tell where the solutions lie, coloring in the number line just like a fun art project! Just remember, one part of your solution loves to hang out until 2 (but not including it), while the other part can rule the world from 5 onwards.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad