Pregunta
Solve for \( x \) \[ y=(x+a) m \] \( x=\square \)
Ask by Cruz Bright. in the United States
Jan 27,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( x = \frac{y}{m} - a \)
Solución
To solve for \( x \) in the equation:
\[
y = (x + a) m
\]
follow these steps:
### Step 1: Expand the Equation
First, expand the right-hand side of the equation:
\[
y = m(x + a)
\]
\[
y = mx + ma
\]
### Step 2: Isolate the Term with \( x \)
Subtract \( ma \) from both sides to isolate the term containing \( x \):
\[
y - ma = mx
\]
### Step 3: Solve for \( x \)
Divide both sides of the equation by \( m \) to solve for \( x \):
\[
x = \frac{y - ma}{m}
\]
Alternatively, you can express it as:
\[
x = \frac{y}{m} - a
\]
### Final Answer
\[
x = \frac{y}{m} - a
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To isolate \( x \) in the equation \( y = (x + a) m \), start by dividing both sides by \( m \) (assuming \( m \neq 0 \)) to get: \[ \frac{y}{m} = x + a. \] Next, subtract \( a \) from both sides to solve for \( x \): \[ x = \frac{y}{m} - a. \] So the solution for \( x \) is: \[ x = \frac{y}{m} - a. \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium