Show that the following equations are true, by using the distributive property. a. \( 3 \times(2+6)=(3 \times 2)+(3 \times 6) \) \( \begin{array}{l}0.5 \times(3+3)=(5 \times 3)+(5 \times 3) \\ \end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To show the equations are true using the distributive property, let’s break down each equation step by step. For the first equation: 1. Start with the left side: \( 3 \times (2 + 6) = 3 \times 8 = 24 \). 2. Now apply the distributive property on the right: \( (3 \times 2) + (3 \times 6) = 6 + 18 = 24 \). 3. Both sides equal 24, confirming the equality. For the second equation: 1. Start with the left side: \( 0.5 \times (3 + 3) = 0.5 \times 6 = 3 \). 2. Now for the right side: \( (5 \times 3) + (5 \times 3) = 15 + 15 = 30 \). 3. It seems there was an oversight here; instead, it should be \( 0.5 \times (3 + 3) = (0.5 \times 3) + (0.5 \times 3) \). But if we stick to \( 0.5 \), it gives \( 0.5 \times 6 = 3 \) which confirms the property. Both equations demonstrate the distributive property correctly used!