(6) \( \begin{aligned} {[3 \div(2-1)]+\frac{5}{7} } & =[\square \div \square]+\frac{5}{7} \\ & =\square+\frac{5}{7} \\ & =3 \frac{5}{7}\end{aligned} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To solve for the values represented by the squares in the equation, let's break it down. The first part, \( 3 \div (2-1) \), simplifies to \( 3 \div 1 = 3 \). Therefore, the first square can be found as follows: since this equals \( [\square \div \square] \), we can set it equal to 3. Next, we know that \( \square + \frac{5}{7} = 3 \frac{5}{7} \). Converting \( 3 \frac{5}{7} \) into an improper fraction gives us \( \frac{26}{7} \). Now, rearranging to find the other square, we have \( \square = \frac{26}{7} - \frac{5}{7} = \frac{21}{7} = 3 \). So we can fill in the blanks: \[ \begin{aligned} \text{The first square: } & 3 \\ \text{The second square: } & 3 \end{aligned} \] The complete equation now reads \( [3 \div (2-1)] + \frac{5}{7} = [3 \div 1] + \frac{5}{7} = 3 + \frac{5}{7} = 3 \frac{5}{7} \).