Pregunta
upstudy study bank question image url

Given: \( h(x)=4\left(2^{-x}\right)+1 \) 5.2.1 Determine the coordinates of the \( y \)-intercept of \( h \). 5.2.2 Explain why \( h \) does not have an \( x \)-intercept. 5.2.3 Draw a sketch graph of \( h \), clearly showing all asymptotes, intercepts with the axes and at least one other point on \( h \). 5.2.4 Describe the transformation from \( h \) to \( g \) if \( g(x)=4\left(2^{-x}+2\right) \).

Ask by Reese Hobbs. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- The \( y \)-intercept of \( h \) is at \( (0,\ 5) \). - \( h \) does not have an \( x \)-intercept because \( h(x) \) is always greater than 0. - The graph of \( h \) has a horizontal asymptote at \( y = 1 \) and passes through points like \( (1,\ 3) \) and \( (-1,\ 9) \). - Function \( g(x) = 4 \cdot (2^{-x} + 2) \) is obtained by shifting \( h(x) \) vertically upward by 7 units.

Solución

Let's analyze each part of the problem step by step for the function \( h(x) = 4 \cdot 2^{-x} + 1 \). --- ### **5.2.1 Determine the coordinates of the \( y \)-intercept of \( h \).** **Solution:** The \( y \)-intercept of a function occurs where \( x = 0 \). \[ h(0) = 4 \cdot 2^{-0} + 1 = 4 \cdot 1 + 1 = 5 \] **Answer:** The \( y \)-intercept of \( h \) is at the point \( (0,\ 5) \). --- ### **5.2.2 Explain why \( h \) does not have an \( x \)-intercept.** **Solution:** An \( x \)-intercept occurs where \( h(x) = 0 \). \[ 0 = 4 \cdot 2^{-x} + 1 \\ 4 \cdot 2^{-x} = -1 \\ 2^{-x} = -\frac{1}{4} \] However, \( 2^{-x} = \frac{1}{2^x} \) is always positive for all real values of \( x \). Therefore, \( 2^{-x} \) can never be negative, making \( 4 \cdot 2^{-x} + 1 \) always greater than 0. **Answer:** Because \( h(x) = 4 \cdot 2^{-x} + 1 \) is always greater than zero for all real \( x \), the graph never crosses the \( x \)-axis. Hence, \( h \) does not have an \( x \)-intercept. --- ### **5.2.3 Draw a sketch graph of \( h \), clearly showing all asymptotes, intercepts with the axes and at least one other point on \( h \).** **Solution:** While a visual sketch cannot be drawn here, here's a detailed description of the graph: 1. **Y-Intercept:** - As calculated in 5.2.1, the \( y \)-intercept is at \( (0,\ 5) \). 2. **Asymptote:** - **Horizontal Asymptote:** \( y = 1 \) - As \( x \to \infty \), \( 2^{-x} \to 0 \) so \( h(x) \to 1 \). 3. **Behavior:** - **As \( x \to \infty \):** \( h(x) \) approaches 1 from above. - **As \( x \to -\infty \):** \( 2^{-x} = 2^{|x|} \to \infty \), so \( h(x) \to \infty \). 4. **Additional Points:** - \( x = 1 \): \[ h(1) = 4 \cdot 2^{-1} + 1 = 4 \cdot \frac{1}{2} + 1 = 2 + 1 = 3 \quad \Rightarrow (1, 3) \] - \( x = -1 \): \[ h(-1) = 4 \cdot 2^{1} + 1 = 4 \cdot 2 + 1 = 8 + 1 = 9 \quad \Rightarrow (-1, 9) \] **Graph Description:** - Start at the \( y \)-intercept \( (0, 5) \). - The graph decreases as \( x \) increases, approaching the horizontal asymptote \( y = 1 \). - The graph increases without bound as \( x \) decreases, moving towards infinity. - Plot additional points like \( (1, 3) \) and \( (-1, 9) \) to guide the shape. **Visual Representation:** ``` y | 10| * 9| (-1,9) | 7| 5|* (0,5) 3| * (1,3) 1|-------------------------> x 0 1 2 3 ``` - The line \( y = 1 \) serves as a horizontal asymptote. - The curve approaches this line as \( x \) increases. --- ### **5.2.4 Describe the transformation from \( h \) to \( g \) if \( g(x) = 4 \cdot \left(2^{-x} + 2\right) \).** **Solution:** Let's compare the two functions: - **Original Function:** \[ h(x) = 4 \cdot 2^{-x} + 1 \] - **Transformed Function:** \[ g(x) = 4 \cdot \left(2^{-x} + 2\right) = 4 \cdot 2^{-x} + 8 \] **Transformation Steps:** 1. **From \( h(x) \) to \( g(x) \):** - Start with \( h(x) = 4 \cdot 2^{-x} + 1 \). - Add 2 inside the parentheses and distribute the 4: \[ g(x) = 4 \cdot 2^{-x} + 8 \] - This effectively adds \( 8 - 1 = 7 \) to the original \( h(x) \). 2. **Interpretation:** - The addition of 7 shifts the entire graph of \( h(x) \) **vertically upwards by 7 units**. **Answer:** Function \( g \) is obtained by shifting \( h \) vertically upward by 7 units. In other words, \( g(x) \) is the graph of \( h(x) \) moved up seven units on the \( y \)-axis.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the \( y \)-intercept of \( h(x) \), evaluate \( h(0) \): \[ h(0) = 4\left(2^{0}\right) + 1 = 4(1) + 1 = 5 \] So, the coordinates of the \( y \)-intercept are \( (0, 5) \). The function \( h(x) = 4(2^{-x}) + 1 \) approaches 1 as \( x \to \infty \) because \( 2^{-x} \) gets closer to 0, but it will never reach 0. Consequently, \( h(x) \) will never cross the \( x \)-axis since it is bounded below by 1 and will never equal 0. To sketch the graph of \( h(x) \), start with the horizontal asymptote at \( y=1 \). Mark the \( y \)-intercept at \( (0, 5) \). As \( x \) decreases, \( h(x) \) will increase toward infinity. You can choose another point, like \( h(1) = 4(2^{-1}) + 1 = 4(0.5) + 1 = 3 \), to illustrate the function's behavior. Transforming from \( h(x) \) to \( g(x) \) involves analyzing the function alteration. The function \( g(x) = 4(2^{-x} + 2) \) can be rewritten, revealing two transformations: first, an upward shift by 8 units and then applying the same vertical scaling of 4. Hence, the core behavior of \( g \) rises significantly compared to \( h \).

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad