Multiply. \[ (6 w-y)(3 w-y+2) \] Simplify. your answer. \( \square \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To multiply \((6w - y)(3w - y + 2)\), we can use the distributive property (often called the FOIL method for binomials). First, distribute \(6w\): 1. \(6w \cdot 3w = 18w^2\) 2. \(6w \cdot (-y) = -6wy\) 3. \(6w \cdot 2 = 12w\) Next, distribute \(-y\): 1. \(-y \cdot 3w = -3wy\) 2. \(-y \cdot (-y) = y^2\) 3. \(-y \cdot 2 = -2y\) Now, combine all these products: \[ 18w^2 - 6wy + 12w - 3wy + y^2 - 2y \] Combine like terms: \[ = 18w^2 + (-6wy - 3wy) + 12w - 2y + y^2 \] \[ = 18w^2 - 9wy + 12w + y^2 - 2y \] Thus, the simplified result is: \[ \boxed{18w^2 - 9wy + 12w + y^2 - 2y} \]